These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31391094)

  • 1. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets.
    Kusstatscher P; Zachow C; Harms K; Maier J; Eigner H; Berg G; Cernava T
    Microbiome; 2019 Aug; 7(1):112. PubMed ID: 31391094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes.
    Liebe S; Wibberg D; Winkler A; Pühler A; Schlüter A; Varrelmann M
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26738557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.
    Liebe S; Christ DS; Ehricht R; Varrelmann M
    Phytopathology; 2016 Jan; 106(1):76-86. PubMed ID: 26524545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence, Distribution, and Pathogenicity of Fungi Causing Root Rot in Idaho Long-Term Sugar Beet Storage Piles.
    Strausbaugh CA
    Plant Dis; 2018 Nov; 102(11):2296-2307. PubMed ID: 30169137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.
    Liebe S; Varrelmann M
    Phytopathology; 2016 Jan; 106(1):65-75. PubMed ID: 26474333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens.
    Zachow C; Tilcher R; Berg G
    Microb Ecol; 2008 Jan; 55(1):119-29. PubMed ID: 18060449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Penicillium sp. Causes Rot in Stored Sugar Beet Roots in Idaho.
    Strausbaugh CA; Dugan F
    Plant Dis; 2017 Oct; 101(10):1781-1787. PubMed ID: 30676924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on relationship between occurrence of root rot and changes of fungal communities in rhizosphere of Panax quinquefolius].
    Yu M; Jiang JL; Ren XM; Li L; Jiao CJ; Yang LJ; Xu H
    Zhongguo Zhong Yao Za Zhi; 2018 May; 43(10):2038-2047. PubMed ID: 29933668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root rot destabilizes the Sanqi rhizosphere core fungal microbiome by reducing the negative connectivity of beneficial microbes.
    Wang B; Geng Y; Lin Y; Xia Q; Wei F; Yang S; Huang X; Zhang J; Cai Z; Zhao J
    Appl Environ Microbiol; 2024 Mar; 90(3):e0223723. PubMed ID: 38315008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gut mycobiome of the Human Microbiome Project healthy cohort.
    Nash AK; Auchtung TA; Wong MC; Smith DP; Gesell JR; Ross MC; Stewart CJ; Metcalf GA; Muzny DM; Gibbs RA; Ajami NJ; Petrosino JF
    Microbiome; 2017 Nov; 5(1):153. PubMed ID: 29178920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A longitudinal study on morpho-genetic diversity of pathogenic Rhizoctonia solani from sugar beet and dry beans of western Nebraska.
    Das S; Plyler-Harveson T; Santra DK; Maharjan B; Nielson KA; Harveson RM
    BMC Microbiol; 2020 Nov; 20(1):354. PubMed ID: 33203383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe.
    Christ DS; Märländer B; Varrelmann M
    Phytopathology; 2011 Nov; 101(11):1330-7. PubMed ID: 21770776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets.
    Zachow C; Müller H; Tilcher R; Berg G
    Front Microbiol; 2014; 5():415. PubMed ID: 25206350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for the safe storage of sugar beets using an ion-ozone mixture.
    Iztayev A; Kulazhanov TK; Yakiyayeva MA; Zhakatayeva AN; Baibatyrov TA
    Acta Sci Pol Technol Aliment; 2021; 20(1):25-35. PubMed ID: 33449517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leuconostoc spp. Associated with Root Rot in Sugar Beet and Their Interaction with Rhizoctonia solani.
    Strausbaugh CA
    Phytopathology; 2016 May; 106(5):432-41. PubMed ID: 26735061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain.
    Shi Y; Yang H; Zhang T; Sun J; Lou K
    Appl Microbiol Biotechnol; 2014; 98(14):6375-85. PubMed ID: 24752839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts.
    El-Tarabily KA
    J Appl Microbiol; 2004; 96(1):69-75. PubMed ID: 14678160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet.
    Tsurumaru H; Okubo T; Okazaki K; Hashimoto M; Kakizaki K; Hanzawa E; Takahashi H; Asanome N; Tanaka F; Sekiyama Y; Ikeda S; Minamisawa K
    Microbes Environ; 2015; 30(1):63-9. PubMed ID: 25740621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.