These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31391217)

  • 1. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway.
    Jin L; Tan YL; Wu Y; Wang X; Shi YZ; Tan ZJ
    RNA; 2019 Nov; 25(11):1532-1548. PubMed ID: 31391217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
    Shi YZ; Jin L; Wang FH; Zhu XL; Tan ZJ
    Biophys J; 2015 Dec; 109(12):2654-2665. PubMed ID: 26682822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.
    Shi YZ; Jin L; Feng CJ; Tan YL; Tan ZJ
    PLoS Comput Biol; 2018 Jun; 14(6):e1006222. PubMed ID: 29879103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions.
    Jin L; Shi YZ; Feng CJ; Tan YL; Tan ZJ
    Biophys J; 2018 Oct; 115(8):1403-1416. PubMed ID: 30236782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect.
    Shi YZ; Wang FH; Wu YY; Tan ZJ
    J Chem Phys; 2014 Sep; 141(10):105102. PubMed ID: 25217954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical unfolding of two DIS RNA kissing complexes from HIV-1.
    Li PT; Tinoco I
    J Mol Biol; 2009 Mar; 386(5):1343-56. PubMed ID: 19452632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions.
    Mu ZC; Tan YL; Zhang BG; Liu J; Shi YZ
    PLoS Comput Biol; 2022 Oct; 18(10):e1010501. PubMed ID: 36260618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions.
    Wang X; Tan YL; Yu S; Shi YZ; Tan ZJ
    Biophys J; 2023 Apr; 122(8):1503-1516. PubMed ID: 36924021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of helix stability on the formation of loop-loop complexes.
    Sehdev P; Crews G; Soto AM
    Biochemistry; 2012 Dec; 51(48):9612-23. PubMed ID: 23094588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop.
    Chen AA; Draper DE; Pappu RV
    J Mol Biol; 2009 Jul; 390(4):805-19. PubMed ID: 19482035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained model for predicting RNA folding thermodynamics.
    Denesyuk NA; Thirumalai D
    J Phys Chem B; 2013 May; 117(17):4901-11. PubMed ID: 23527587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of RNA/RNA kissing complex: with application to HIV dimerization initiation signal.
    Cao S; Chen SJ
    RNA; 2011 Dec; 17(12):2130-43. PubMed ID: 22028361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and simulations for RNA folding in mixtures of monovalent and divalent cations.
    Nguyen HT; Hori N; Thirumalai D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21022-21030. PubMed ID: 31570624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment.
    Kolb FA; Malmgren C; Westhof E; Ehresmann C; Ehresmann B; Wagner EG; Romby P
    RNA; 2000 Mar; 6(3):311-24. PubMed ID: 10744017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting ion binding properties for RNA tertiary structures.
    Tan ZJ; Chen SJ
    Biophys J; 2010 Sep; 99(5):1565-76. PubMed ID: 20816069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-dependent folding energy landscape of RNA three-way junction.
    Chen G; Tan ZJ; Chen SJ
    Biophys J; 2010 Jan; 98(1):111-20. PubMed ID: 20085723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of RNA interactions with monovalent ions.
    Chen AA; Marucho M; Baker NA; Pappu RV
    Methods Enzymol; 2009; 469():411-32. PubMed ID: 20946801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt contribution to RNA tertiary structure folding stability.
    Tan ZJ; Chen SJ
    Biophys J; 2011 Jul; 101(1):176-87. PubMed ID: 21723828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.