These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31391261)
1. MAP7 Prevents Axonal Branch Retraction by Creating a Stable Microtubule Boundary to Rescue Polymerization. Tymanskyj SR; Ma L J Neurosci; 2019 Sep; 39(36):7118-7131. PubMed ID: 31391261 [TBL] [Abstract][Full Text] [Related]
2. MAP7 Regulates Axon Collateral Branch Development in Dorsal Root Ganglion Neurons. Tymanskyj SR; Yang B; Falnikar A; Lepore AC; Ma L J Neurosci; 2017 Feb; 37(6):1648-1661. PubMed ID: 28069923 [TBL] [Abstract][Full Text] [Related]
3. MAP7 regulates axon morphogenesis by recruiting kinesin-1 to microtubules and modulating organelle transport. Tymanskyj SR; Yang BH; Verhey KJ; Ma L Elife; 2018 Aug; 7():. PubMed ID: 30132755 [TBL] [Abstract][Full Text] [Related]
4. C-terminal region of MAP7 domain containing protein 3 (MAP7D3) promotes microtubule polymerization by binding at the C-terminal tail of tubulin. Yadav S; Verma PJ; Panda D PLoS One; 2014; 9(6):e99539. PubMed ID: 24927501 [TBL] [Abstract][Full Text] [Related]
5. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. Ertürk A; Hellal F; Enes J; Bradke F J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353 [TBL] [Abstract][Full Text] [Related]
6. MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. Chaudhary AR; Lu H; Krementsova EB; Bookwalter CS; Trybus KM; Hendricks AG J Biol Chem; 2019 Jun; 294(26):10160-10171. PubMed ID: 31085585 [TBL] [Abstract][Full Text] [Related]
7. Microtubule reconfiguration during axonal retraction induced by nitric oxide. He Y; Yu W; Baas PW J Neurosci; 2002 Jul; 22(14):5982-91. PubMed ID: 12122060 [TBL] [Abstract][Full Text] [Related]
8. MAP7 family proteins regulate kinesin-1 recruitment and activation. Hooikaas PJ; Martin M; Mühlethaler T; Kuijntjes GJ; Peeters CAE; Katrukha EA; Ferrari L; Stucchi R; Verhagen DGF; van Riel WE; Grigoriev I; Altelaar AFM; Hoogenraad CC; Rüdiger SGD; Steinmetz MO; Kapitein LC; Akhmanova A J Cell Biol; 2019 Apr; 218(4):1298-1318. PubMed ID: 30770434 [TBL] [Abstract][Full Text] [Related]
9. CNP/cGMP signaling regulates axon branching and growth by modulating microtubule polymerization. Xia C; Nguyen M; Garrison AK; Zhao Z; Wang Z; Sutherland C; Ma L Dev Neurobiol; 2013 Sep; 73(9):673-87. PubMed ID: 23420620 [TBL] [Abstract][Full Text] [Related]
10. MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon. Pan X; Cao Y; Stucchi R; Hooikaas PJ; Portegies S; Will L; Martin M; Akhmanova A; Harterink M; Hoogenraad CC Cell Rep; 2019 Feb; 26(8):1988-1999.e6. PubMed ID: 30784582 [TBL] [Abstract][Full Text] [Related]
11. Microtubule stabilization by Mdp3 is partially attributed to its modulation of HDAC6 in addition to its association with tubulin and microtubules. Tala ; Sun X; Chen J; Zhang L; Liu N; Zhou J; Li D; Liu M PLoS One; 2014; 9(3):e90932. PubMed ID: 24614595 [TBL] [Abstract][Full Text] [Related]
12. Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. Lin PC; Chan PM; Hall C; Manser E J Biol Chem; 2011 Dec; 286(48):41466-41478. PubMed ID: 21953449 [TBL] [Abstract][Full Text] [Related]
13. Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization. Tortosa E; Adolfs Y; Fukata M; Pasterkamp RJ; Kapitein LC; Hoogenraad CC Neuron; 2017 May; 94(4):809-825.e7. PubMed ID: 28521134 [TBL] [Abstract][Full Text] [Related]
14. STOP (stable-tubule-only-polypeptide) is preferentially associated with the stable domain of axonal microtubules. Slaughter T; Black MM J Neurocytol; 2003 May; 32(4):399-413. PubMed ID: 14724383 [TBL] [Abstract][Full Text] [Related]
15. Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy. Almeida-Souza L; Asselbergh B; d'Ydewalle C; Moonens K; Goethals S; de Winter V; Azmi A; Irobi J; Timmermans JP; Gevaert K; Remaut H; Van Den Bosch L; Timmerman V; Janssens S J Neurosci; 2011 Oct; 31(43):15320-8. PubMed ID: 22031878 [TBL] [Abstract][Full Text] [Related]
16. Resonance assignments of the microtubule-binding domain of the microtubule-associated protein 7 (MAP7). Adler A; Kjaer LF; Beugelink JW; Baldus M; van Ingen H Biomol NMR Assign; 2023 Jun; 17(1):83-88. PubMed ID: 37099260 [TBL] [Abstract][Full Text] [Related]
17. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486 [TBL] [Abstract][Full Text] [Related]
18. Competition between microtubule-associated proteins directs motor transport. Monroy BY; Sawyer DL; Ackermann BE; Borden MM; Tan TC; Ori-McKenney KM Nat Commun; 2018 Apr; 9(1):1487. PubMed ID: 29662074 [TBL] [Abstract][Full Text] [Related]
19. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Yu W; Qiang L; Solowska JM; Karabay A; Korulu S; Baas PW Mol Biol Cell; 2008 Apr; 19(4):1485-98. PubMed ID: 18234839 [TBL] [Abstract][Full Text] [Related]
20. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Qiang L; Yu W; Liu M; Solowska JM; Baas PW Mol Biol Cell; 2010 Jan; 21(2):334-44. PubMed ID: 19940015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]