These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 31391469)
1. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries. Zhang XP; Sun YY; Sun Z; Yang CS; Zhang T Nat Commun; 2019 Aug; 10(1):3543. PubMed ID: 31391469 [TBL] [Abstract][Full Text] [Related]
2. An Organic Redox Mediator with a Defense-Donor for Lithium Anode in Lithium-Oxygen Batteries. Sun Z; Tan Y; Zhan Y; Li K; Dou W; Wang C; Lin X; Yuan R; Yan J; Zheng M; Dong Q Small Methods; 2023 Feb; 7(2):e2201289. PubMed ID: 36563133 [TBL] [Abstract][Full Text] [Related]
3. Bifunctional 1-Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium-Oxygen Batteries. Li YN; Jiang FL; Sun Z; Yamamoto O; Imanishi N; Zhang T ACS Appl Mater Interfaces; 2021 Apr; 13(14):16437-16444. PubMed ID: 33788529 [TBL] [Abstract][Full Text] [Related]
4. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related]
5. Resolving the Incomplete Charging Behavior of Redox-Mediated Li-O Kim H; Min KJ; Jeong MG; Jung HG; Sun YK ACS Appl Mater Interfaces; 2022 Oct; 14(40):45945-45953. PubMed ID: 36171737 [TBL] [Abstract][Full Text] [Related]
6. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries. Liang Z; Lu YC J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413 [TBL] [Abstract][Full Text] [Related]
7. In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries. Wang Y; Ren L; Liu J; Lu X; Wang Q; Zhou M; Liu W; Sun X ACS Appl Mater Interfaces; 2022 Nov; 14(45):50982-50991. PubMed ID: 36322052 [TBL] [Abstract][Full Text] [Related]
8. A Facile Potential Hold Method for Fostering an Inorganic Solid-Electrolyte Interphase for Anode-Free Lithium-Metal Batteries. Shin W; Manthiram A Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202115909. PubMed ID: 35043528 [TBL] [Abstract][Full Text] [Related]
9. A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Hagos TM; Bezabh HK; Huang CJ; Jiang SK; Su WN; Hwang BJ Acc Chem Res; 2021 Dec; 54(24):4474-4485. PubMed ID: 34763425 [TBL] [Abstract][Full Text] [Related]
10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
11. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Yu M; Ren X; Ma L; Wu Y Nat Commun; 2014 Oct; 5():5111. PubMed ID: 25277368 [TBL] [Abstract][Full Text] [Related]
12. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen. Kwak WJ; Kim H; Petit YK; Leypold C; Nguyen TT; Mahne N; Redfern P; Curtiss LA; Jung HG; Borisov SM; Freunberger SA; Sun YK Nat Commun; 2019 Mar; 10(1):1380. PubMed ID: 30914647 [TBL] [Abstract][Full Text] [Related]
13. LiF-Rich Interfacial Protective Layer Enables Air-Stable Lithium Metal Anodes for Dendrite-Free Lithium Metal Batteries. Han Y; Fang R; Lu C; Wang K; Zhang J; Xia X; He X; Gan Y; Huang H; Zhang W; Xia Y ACS Appl Mater Interfaces; 2023 Jul; 15(26):31543-31551. PubMed ID: 37341032 [TBL] [Abstract][Full Text] [Related]
14. Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium-Oxygen Batteries. Wu S; Qiao Y; Deng H; He Y; Zhou H J Phys Chem Lett; 2018 Dec; 9(23):6761-6766. PubMed ID: 30421927 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient Br Xin X; Ito K; Kubo Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):25976-25984. PubMed ID: 28714666 [TBL] [Abstract][Full Text] [Related]
16. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Shen X; Li Y; Qian T; Liu J; Zhou J; Yan C; Goodenough JB Nat Commun; 2019 Feb; 10(1):900. PubMed ID: 30796214 [TBL] [Abstract][Full Text] [Related]
17. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li Feng N; Mu X; Zhang X; He P; Zhou H ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362 [TBL] [Abstract][Full Text] [Related]
18. A BF Shang M; Shovon OG; Wong FEY; Niu J Adv Mater; 2023 Feb; 35(8):e2210111. PubMed ID: 36526265 [TBL] [Abstract][Full Text] [Related]
19. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium-Metal Batteries. Liu X; Song X; Guo Z; Bian T; Zhang J; Zhao Y Angew Chem Int Ed Engl; 2021 Jul; 60(30):16360-16365. PubMed ID: 34019317 [TBL] [Abstract][Full Text] [Related]
20. Pulsed Current Boosts the Stability of the Lithium Metal Anode and the Improvement of Lithium-Oxygen Battery Performance. Zhang J; Zhou Z; Wang Y; Chen Q; Hou G; Tang Y ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36306246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]