These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31391544)

  • 1. Correlation between pigmented arc and epithelial thickness (COPE) study in orthokeratology-treated patients using OCT measurements.
    Liu CF; Lee JS; Sun CC; Lin KK; Hou CH; Yeung L; Peng SY
    Eye (Lond); 2020 Feb; 34(2):352-359. PubMed ID: 31391544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of corneal pigmented arc with wide epithelial thickness map in orthokeratology-treated children using optical coherence tomography measurements.
    Huang PW; Yeung L; Sun CC; Chen HM; Peng SY; Chen YT; Liu CF
    Cont Lens Anterior Eye; 2020 Jun; 43(3):238-243. PubMed ID: 32143962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incidence of corneal pigmented arc and factors associated with its appearance in orthokeratology.
    Cho P; Cheung SW; Mountford J; Chui WS
    Ophthalmic Physiol Opt; 2005 Nov; 25(6):478-84. PubMed ID: 16343123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal thickness changes in myopic children during and after short-term orthokeratology lens wear.
    Wan K; Yau HT; Cheung SW; Cho P
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):757-767. PubMed ID: 33878198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pachymetry map of corneal epithelium in children wearing orthokeratology contact lenses.
    Qian Y; Xue F; Huang J; Qu X; Zhou X; Lanen-Wanek DV
    Curr Eye Res; 2014 Mar; 39(3):263-70. PubMed ID: 24325352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLEAR - Orthokeratology.
    Vincent SJ; Cho P; Chan KY; Fadel D; Ghorbani-Mojarrad N; González-Méijome JM; Johnson L; Kang P; Michaud L; Simard P; Jones L
    Cont Lens Anterior Eye; 2021 Apr; 44(2):240-269. PubMed ID: 33775379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High myopia-partial reduction orthokeratology (HM-PRO): study design.
    Charm J; Cho P
    Cont Lens Anterior Eye; 2013 Aug; 36(4):164-70. PubMed ID: 23518209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive Role of Paracentral Corneal Toricity Using Elevation Data for Treatment Zone Decentration During Orthokeratology.
    Li Z; Cui D; Long W; Hu Y; He L; Yang X
    Curr Eye Res; 2018 Sep; 43(9):1083-1089. PubMed ID: 29806506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of Myopia Control and Distribution of Corneal Epithelial Thickness in Children Treated with Orthokeratology Assessed Using Optical Coherence Tomography.
    Kuo YK; Chen YT; Chen HM; Wu PC; Sun CC; Yeung L; Lin KK; Chen HC; Chuang LH; Lai CC; Chen YH; Liu CF
    J Pers Med; 2022 Feb; 12(2):. PubMed ID: 35207766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of the corneal epithelium after overnight wear of orthokeratology contact lenses for myopia reduction.
    Zhang J; Li J; Li X; Li F; Wang T
    Cont Lens Anterior Eye; 2020 Jun; 43(3):232-237. PubMed ID: 32127287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of orthokeratology treatment zone decentration on myopia progression.
    Sun L; Li ZX; Chen Y; He ZQ; Song HX
    BMC Ophthalmol; 2022 Feb; 22(1):76. PubMed ID: 35164702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-Ortho-K Corneal Epithelium Changes in Myopic Eyes.
    Qu D; Zhou Y
    Dis Markers; 2022; 2022():3361172. PubMed ID: 35677633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malleability of the ocular surface in response to mechanical stress induced by orthokeratology contact lenses.
    Lu F; Simpson T; Sorbara L; Fonn D
    Cornea; 2008 Feb; 27(2):133-41. PubMed ID: 18216565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choroidal thickness and axial length changes in myopic children treated with orthokeratology.
    Li Z; Cui D; Hu Y; Ao S; Zeng J; Yang X
    Cont Lens Anterior Eye; 2017 Dec; 40(6):417-423. PubMed ID: 28935528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of orthokeratology on axial length growth in myopic anisometropes.
    Chen Z; Zhou J; Qu X; Zhou X; Xue F;
    Cont Lens Anterior Eye; 2018 Jun; 41(3):263-266. PubMed ID: 29329901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of axial length measurements for monitoring myopic progression in orthokeratology.
    Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1613-5. PubMed ID: 23361504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Orthokeratology on Choroidal Thickness and Axial Length.
    Chen Z; Xue F; Zhou J; Qu X; Zhou X
    Optom Vis Sci; 2016 Sep; 93(9):1064-71. PubMed ID: 27273270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White lesion in the corneal pigmented ring associated with orthokeratology.
    Cheung SW; Cho P; Cheung A
    Ophthalmic Physiol Opt; 2005 May; 25(3):264-8. PubMed ID: 15854075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology].
    Mao XJ; Huang CC; Chen L; Lü F
    Zhonghua Yan Ke Za Zhi; 2010 Mar; 46(3):209-13. PubMed ID: 20450664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.