BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31392273)

  • 1. Structural basis and mechanism for metallochaperone-assisted assembly of the Cu
    Canonica F; Klose D; Ledermann R; Sauer MM; Abicht HK; Quade N; Gossert AD; Chesnov S; Fischer HM; Jeschke G; Hennecke H; Glockshuber R
    Sci Adv; 2019 Jul; 5(7):eaaw8478. PubMed ID: 31392273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical pathway for the biosynthesis of the Cu
    Canonica F; Hennecke H; Glockshuber R
    FEBS Lett; 2019 Nov; 593(21):2977-2989. PubMed ID: 31449676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation.
    Abicht HK; Schärer MA; Quade N; Ledermann R; Mohorko E; Capitani G; Hennecke H; Glockshuber R
    J Biol Chem; 2014 Nov; 289(47):32431-44. PubMed ID: 25274631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic insights into an extracytoplasmic copper trafficking pathway in Streptomyces lividans.
    Blundell KL; Hough MA; Vijgenboom E; Worrall JA
    Biochem J; 2014 May; 459(3):525-38. PubMed ID: 24548299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI.
    Mohorko E; Abicht HK; Bühler D; Glockshuber R; Hennecke H; Fischer HM
    FEBS Lett; 2012 Nov; 586(23):4094-9. PubMed ID: 23123159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum.
    Serventi F; Youard ZA; Murset V; Huwiler S; Bühler D; Richter M; Luchsinger R; Fischer HM; Brogioli R; Niederer M; Hennecke H
    J Biol Chem; 2012 Nov; 287(46):38812-23. PubMed ID: 23012364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations.
    Llases ME; Morgada MN; Vila AJ
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase.
    Chacón KN; Blackburn NJ
    J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu
    Llases ME; Lisa MN; Morgada MN; Giannini E; Alzari PM; Vila AJ
    FEBS J; 2020 Feb; 287(4):749-762. PubMed ID: 31348612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum.
    Bühler D; Rossmann R; Landolt S; Balsiger S; Fischer HM; Hennecke H
    J Biol Chem; 2010 May; 285(21):15704-13. PubMed ID: 20335176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.
    Morgada MN; Abriata LA; Cefaro C; Gajda K; Banci L; Vila AJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11771-6. PubMed ID: 26351686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase.
    Blackburn NJ; Barr ME; Woodruff WH; van der Oost J; de Vries S
    Biochemistry; 1994 Aug; 33(34):10401-7. PubMed ID: 8068678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper metallochaperones are required for the assembly of bacteroid cytochrome c oxidase which is functioning for nitrogen fixation in soybean nodules.
    Arunothayanan H; Nomura M; Hamaguchi R; Itakura M; Minamisawa K; Tajima S
    Plant Cell Physiol; 2010 Jul; 51(7):1242-6. PubMed ID: 20519277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb3 -type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus.
    Trasnea PI; Utz M; Khalfaoui-Hassani B; Lagies S; Daldal F; Koch HG
    Mol Microbiol; 2016 Apr; 100(2):345-61. PubMed ID: 26718481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center.
    Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B
    Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of metal center biogenesis in human cytochrome c oxidase.
    Nývltová E; Dietz JV; Seravalli J; Khalimonchuk O; Barrientos A
    Nat Commun; 2022 Jun; 13(1):3615. PubMed ID: 35750769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans.
    Dash BP; Alles M; Bundschuh FA; Richter OH; Ludwig B
    Biochim Biophys Acta; 2015 Feb; 1847(2):202-211. PubMed ID: 25445316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of electron transfer modulation in the purple CuA center.
    Robinson H; Ang MC; Gao YG; Hay MT; Lu Y; Wang AH
    Biochemistry; 1999 May; 38(18):5677-83. PubMed ID: 10231517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for copper/silver binding by the Synechocystis metallochaperone CopM.
    Zhao S; Wang X; Niu G; Dong W; Wang J; Fang Y; Lin Y; Liu L
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):997-1005. PubMed ID: 27599732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin.
    Farver O; Lu Y; Ang MC; Pecht I
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):899-902. PubMed ID: 9927665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.