BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31392335)

  • 1. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements.
    Elango R; Osia B; Harcy V; Malc E; Mieczkowski PA; Roberts SA; Malkova A
    Nucleic Acids Res; 2019 Oct; 47(18):9666-9684. PubMed ID: 31392335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Break-induced replication is a source of mutation clusters underlying kataegis.
    Sakofsky CJ; Roberts SA; Malc E; Mieczkowski PA; Resnick MA; Gordenin DA; Malkova A
    Cell Rep; 2014 Jun; 7(5):1640-1648. PubMed ID: 24882007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Break-Induced Replication in Yeast.
    Osia B; Elango R; Kramara J; Roberts SA; Malkova A
    Methods Mol Biol; 2021; 2153():307-328. PubMed ID: 32840789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migrating bubble during break-induced replication drives conservative DNA synthesis.
    Saini N; Ramakrishnan S; Elango R; Ayyar S; Zhang Y; Deem A; Ira G; Haber JE; Lobachev KS; Malkova A
    Nature; 2013 Oct; 502(7471):389-92. PubMed ID: 24025772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Break-Induced Replication in Yeast.
    Elango R; Kockler Z; Liu L; Malkova A
    Methods Enzymol; 2018; 601():161-203. PubMed ID: 29523232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis.
    Che J; Smith S; Kim YJ; Shim EY; Myung K; Lee SE
    PLoS Genet; 2015 Feb; 11(2):e1004990. PubMed ID: 25705897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.
    Chan K; Sterling JF; Roberts SA; Bhagwat AS; Resnick MA; Gordenin DA
    PLoS Genet; 2012; 8(12):e1003149. PubMed ID: 23271983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Break-Induced Replication: The Where, The Why, and The How.
    Kramara J; Osia B; Malkova A
    Trends Genet; 2018 Jul; 34(7):518-531. PubMed ID: 29735283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2.
    Elango R; Sheng Z; Jackson J; DeCata J; Ibrahim Y; Pham NT; Liang DH; Sakofsky CJ; Vindigni A; Lobachev KS; Ira G; Malkova A
    Nat Commun; 2017 Nov; 8(1):1790. PubMed ID: 29176630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Break-induced replication: unraveling each step.
    Liu L; Malkova A
    Trends Genet; 2022 Jul; 38(7):752-765. PubMed ID: 35459559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.
    Ruff P; Donnianni RA; Glancy E; Oh J; Symington LS
    Cell Rep; 2016 Dec; 17(12):3359-3368. PubMed ID: 28009302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Break induced replication in eukaryotes: mechanisms, functions, and consequences.
    Sakofsky CJ; Malkova A
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):395-413. PubMed ID: 28427283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication.
    Hoopes JI; Cortez LM; Mertz TM; Malc EP; Mieczkowski PA; Roberts SA
    Cell Rep; 2016 Feb; 14(6):1273-1282. PubMed ID: 26832400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migrating bubble synthesis promotes mutagenesis through lesions in its template.
    Osia B; Twarowski J; Jackson T; Lobachev K; Liu L; Malkova A
    Nucleic Acids Res; 2022 Jul; 50(12):6870-6889. PubMed ID: 35748867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres.
    Stivison EA; Young KJ; Symington LS
    Nucleic Acids Res; 2020 Dec; 48(22):12697-12710. PubMed ID: 33264397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking break-induced replication shows that it stalls at roadblocks.
    Liu L; Yan Z; Osia BA; Twarowski J; Sun L; Kramara J; Lee RS; Kumar S; Elango R; Li H; Dang W; Ira G; Malkova A
    Nature; 2021 Feb; 590(7847):655-659. PubMed ID: 33473214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases.
    Pardo B; Aguilera A
    PLoS Genet; 2012 Sep; 8(9):e1002979. PubMed ID: 23071463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Break-induced replication mechanisms in yeast and mammals.
    Wu X; Malkova A
    Curr Opin Genet Dev; 2021 Dec; 71():163-170. PubMed ID: 34481360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex.
    Smith CE; Lam AF; Symington LS
    Mol Cell Biol; 2009 Mar; 29(6):1432-41. PubMed ID: 19139272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Break-induced replication is highly inaccurate.
    Deem A; Keszthelyi A; Blackgrove T; Vayl A; Coffey B; Mathur R; Chabes A; Malkova A
    PLoS Biol; 2011 Feb; 9(2):e1000594. PubMed ID: 21347245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.