These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 31392469)
1. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. Khan AMAM; Mendoza C; Hauk VJ; Blumer-Schuette SE J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1251-1263. PubMed ID: 31392469 [TBL] [Abstract][Full Text] [Related]
2. Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Khan AMAM; Hauk VJ; Ibrahim M; Raffel TR; Blumer-Schuette SE Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086304 [TBL] [Abstract][Full Text] [Related]
3. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869 [TBL] [Abstract][Full Text] [Related]
4. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379 [TBL] [Abstract][Full Text] [Related]
5. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355 [No Abstract] [Full Text] [Related]
6. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. Blumer-Schuette SE; Alahuhta M; Conway JM; Lee LL; Zurawski JV; Giannone RJ; Hettich RL; Lunin VV; Himmel ME; Kelly RM J Biol Chem; 2015 Apr; 290(17):10645-56. PubMed ID: 25720489 [TBL] [Abstract][Full Text] [Related]
8. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233 [TBL] [Abstract][Full Text] [Related]
9. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Laemthong T; Bing RG; Crosby JR; Manesh MJH; Adams MWW; Kelly RM Extremophiles; 2023 Feb; 27(1):6. PubMed ID: 36802247 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671 [TBL] [Abstract][Full Text] [Related]
11. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose. Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1643-1651. PubMed ID: 28942503 [TBL] [Abstract][Full Text] [Related]
12. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. Blumer-Schuette SE; Giannone RJ; Zurawski JV; Ozdemir I; Ma Q; Yin Y; Xu Y; Kataeva I; Poole FL; Adams MW; Hamilton-Brehm SD; Elkins JG; Larimer FW; Land ML; Hauser LJ; Cottingham RW; Hettich RL; Kelly RM J Bacteriol; 2012 Aug; 194(15):4015-28. PubMed ID: 22636774 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910 [TBL] [Abstract][Full Text] [Related]
14. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Blumer-Schuette SE; Lewis DL; Kelly RM Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878 [TBL] [Abstract][Full Text] [Related]
15. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Straub CT; Khatibi PA; Wang JP; Conway JM; Williams-Rhaesa AM; Peszlen IM; Chiang VL; Adams MWW; Kelly RM Nat Commun; 2019 Aug; 10(1):3548. PubMed ID: 31391460 [TBL] [Abstract][Full Text] [Related]
16. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991 [TBL] [Abstract][Full Text] [Related]
17. Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Russell JF; Russo ML; Wang X; Hengge N; Chung D; Wells L; Bomble YJ; Westpheling J Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769195 [No Abstract] [Full Text] [Related]
18. Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii. Kanafusa-Shinkai S; Wakayama J; Tsukamoto K; Hayashi N; Miyazaki Y; Ohmori H; Tajima K; Yokoyama H J Biosci Bioeng; 2013 Jan; 115(1):64-70. PubMed ID: 22921519 [TBL] [Abstract][Full Text] [Related]
19. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Kim SK; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202 [TBL] [Abstract][Full Text] [Related]
20. Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome. Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J J Ind Microbiol Biotechnol; 2019 May; 46(5):687-695. PubMed ID: 30783893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]