BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31392575)

  • 1. A Spatially Resolved and Quantitative Model of Early Atherosclerosis.
    Thon MP; Myerscough MR; Gee MW
    Bull Math Biol; 2019 Oct; 81(10):4022-4068. PubMed ID: 31392575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of atheroma plaque formation and development in coronary arteries.
    Cilla M; Peña E; Martínez MA
    J R Soc Interface; 2014 Jan; 11(90):20130866. PubMed ID: 24196695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
    Thon MP; Ford HZ; Gee MW; Myerscough MR
    Bull Math Biol; 2018 Jan; 80(1):175-214. PubMed ID: 29181748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcation and dynamics in a mathematical model of early atherosclerosis: How acute inflammation drives lesion development.
    Chalmers AD; Cohen A; Bursill CA; Myerscough MR
    J Math Biol; 2015 Dec; 71(6-7):1451-80. PubMed ID: 25732771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial autophagic flux hampers atherosclerotic lesion development.
    Kheloufi M; Vion AC; Hammoutene A; Poisson J; Lasselin J; Devue C; Pic I; Dupont N; Busse J; Stark K; Lafaurie-Janvore J; Barakat AI; Loyer X; Souyri M; Viollet B; Julia P; Tedgui A; Codogno P; Boulanger CM; Rautou PE
    Autophagy; 2018; 14(1):173-175. PubMed ID: 29157095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of necrotic cores in atherosclerotic plaque.
    Fok PW
    Math Med Biol; 2012 Dec; 29(4):301-27. PubMed ID: 21908792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long time evolution of atherosclerotic plaques.
    Bulelzai MA; Dubbeldam JL
    J Theor Biol; 2012 Mar; 297():1-10. PubMed ID: 22142625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical factors in atherosclerosis: mechanisms and clinical implications.
    Kwak BR; Bäck M; Bochaton-Piallat ML; Caligiuri G; Daemen MJ; Davies PF; Hoefer IE; Holvoet P; Jo H; Krams R; Lehoux S; Monaco C; Steffens S; Virmani R; Weber C; Wentzel JJ; Evans PC
    Eur Heart J; 2014 Nov; 35(43):3013-20, 3020a-3020d. PubMed ID: 25230814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model.
    Sun N; Wood NB; Hughes AD; Thom SA; Yun Xu X
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3148-57. PubMed ID: 17277019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms that regulate macrophage burden in atherosclerosis.
    Randolph GJ
    Circ Res; 2014 May; 114(11):1757-71. PubMed ID: 24855200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic vessels: an emerging actor in atherosclerotic plaque development.
    Kutkut I; Meens MJ; McKee TA; Bochaton-Piallat ML; Kwak BR
    Eur J Clin Invest; 2015 Jan; 45(1):100-8. PubMed ID: 25388153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear stress in atherosclerotic plaque determination.
    Li X; Yang Q; Wang Z; Wei D
    DNA Cell Biol; 2014 Dec; 33(12):830-8. PubMed ID: 25165867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach.
    Sakellarios AI; Raber L; Bourantas CV; Exarchos TP; Athanasiou LS; Pelosi G; Koskinas KC; Parodi O; Naka KK; Michalis LK; Serruys PW; Garcia-Garcia HM; Windecker S; Fotiadis DI
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1721-1730. PubMed ID: 28113248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migratory and Dancing Macrophage Subsets in Atherosclerotic Lesions.
    McArdle S; Buscher K; Ghosheh Y; Pramod AB; Miller J; Winkels H; Wolf D; Ley K
    Circ Res; 2019 Dec; 125(12):1038-1051. PubMed ID: 31594470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regions of low endothelial shear stress colocalize with positive vascular remodeling and atherosclerotic plaque disruption: an in vivo magnetic resonance imaging study.
    Phinikaridou A; Hua N; Pham T; Hamilton JA
    Circ Cardiovasc Imaging; 2013 Mar; 6(2):302-10. PubMed ID: 23357244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical factors and macrophages in plaque stability.
    Seneviratne A; Hulsmans M; Holvoet P; Monaco C
    Cardiovasc Res; 2013 Jul; 99(2):284-93. PubMed ID: 23687352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study.
    Stone PH; Saito S; Takahashi S; Makita Y; Nakamura S; Kawasaki T; Takahashi A; Katsuki T; Nakamura S; Namiki A; Hirohata A; Matsumura T; Yamazaki S; Yokoi H; Tanaka S; Otsuji S; Yoshimachi F; Honye J; Harwood D; Reitman M; Coskun AU; Papafaklis MI; Feldman CL;
    Circulation; 2012 Jul; 126(2):172-81. PubMed ID: 22723305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage proliferation and apoptosis in atherosclerosis.
    Andrés V; Pello OM; Silvestre-Roig C
    Curr Opin Lipidol; 2012 Oct; 23(5):429-38. PubMed ID: 22964992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thrombosis formation on atherosclerotic lesions and plaque rupture.
    Badimon L; Vilahur G
    J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.