BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31392984)

  • 1. CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR-Cas system.
    Kim JG; Garrett S; Wei Y; Graveley BR; Terns MP
    Nucleic Acids Res; 2019 Sep; 47(16):8632-8648. PubMed ID: 31392984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2.
    Grainy J; Garrett S; Graveley BR; P Terns M
    Nucleic Acids Res; 2019 Aug; 47(14):7518-7531. PubMed ID: 31219587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR Immunological Memory Requires a Host Factor for Specificity.
    Nuñez JK; Bai L; Harrington LB; Hinder TL; Doudna JA
    Mol Cell; 2016 Jun; 62(6):824-833. PubMed ID: 27211867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system.
    Yoganand KN; Sivathanu R; Nimkar S; Anand B
    Nucleic Acids Res; 2017 Jan; 45(1):367-381. PubMed ID: 27899566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
    Fagerlund RD; Wilkinson ME; Klykov O; Barendregt A; Pearce FG; Kieper SN; Maxwell HWR; Capolupo A; Heck AJR; Krause KL; Bostina M; Scheltema RA; Staals RHJ; Fineran PC
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5122-E5128. PubMed ID: 28611213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR type II-A subgroups exhibit phylogenetically distinct mechanisms for prespacer insertion.
    Van Orden MJ; Newsom S; Rajan R
    J Biol Chem; 2020 Aug; 295(32):10956-10968. PubMed ID: 32513871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus.
    Wei Y; Chesne MT; Terns RM; Terns MP
    Nucleic Acids Res; 2015 Feb; 43(3):1749-58. PubMed ID: 25589547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.
    McGinn J; Marraffini LA
    Mol Cell; 2016 Nov; 64(3):616-623. PubMed ID: 27618488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system.
    Drabavicius G; Sinkunas T; Silanskas A; Gasiunas G; Venclovas Č; Siksnys V
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29891635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.
    Wei Y; Terns RM; Terns MP
    Genes Dev; 2015 Feb; 29(4):356-61. PubMed ID: 25691466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of
    He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L
    Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus.
    Hu T; Cui Y; Qu X
    Arch Microbiol; 2020 May; 202(4):695-710. PubMed ID: 31781808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System.
    Wilkinson M; Drabavicius G; Silanskas A; Gasiunas G; Siksnys V; Wigley DB
    Mol Cell; 2019 Jul; 75(1):90-101.e5. PubMed ID: 31080012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas4/1 dual nuclease activities enable prespacer maturation and directional integration in a type I-G CRISPR-Cas system.
    Dhingra Y; Sashital DG
    J Biol Chem; 2023 Sep; 299(9):105178. PubMed ID: 37607619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prespacer processing and specific integration in a Type I-A CRISPR system.
    Rollie C; Graham S; Rouillon C; White MF
    Nucleic Acids Res; 2018 Feb; 46(3):1007-1020. PubMed ID: 29228332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system.
    Yoganand KN; Muralidharan M; Nimkar S; Anand B
    J Biol Chem; 2019 Dec; 294(52):20039-20053. PubMed ID: 31748409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protecting genome integrity during CRISPR immune adaptation.
    Wright AV; Doudna JA
    Nat Struct Mol Biol; 2016 Oct; 23(10):876-883. PubMed ID: 27595346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus.
    Cañez C; Selle K; Goh YJ; Barrangou R
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System.
    Wright AV; Wang JY; Burstein D; Harrington LB; Paez-Espino D; Kyrpides NC; Iavarone AT; Banfield JF; Doudna JA
    Mol Cell; 2019 Feb; 73(4):727-737.e3. PubMed ID: 30709710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.