BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31393031)

  • 1. Substrate-specificity of cytochrome P450-mediated detoxification as an evolutionary strategy for specialization on furanocoumarin-containing hostplants: CYP6AE89 in parsnip webworms.
    Calla B; Wu WY; Dean CAE; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2020 Feb; 29(1):112-123. PubMed ID: 31393031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella.
    Li W; Zangerl AR; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2004 Dec; 13(6):603-13. PubMed ID: 15606809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotype matching in wild parsnip and parsnip webworms: causes and consequences.
    Zangerl AR; Berenbaum MR
    Evolution; 2003 Apr; 57(4):806-15. PubMed ID: 12778550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable substrate-specificity of CYP6AB3 in Depressaria pastinacella, a highly specialized caterpillar.
    Mao W; Rupasinghe S; Zangerl AR; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2006 Apr; 15(2):169-79. PubMed ID: 16640727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allelic variation in the Depressaria pastinacella CYP6AB3 protein enhances metabolism of plant allelochemicals by altering a proximal surface residue and potential interactions with cytochrome P450 reductase.
    Mao W; Rupasinghe SG; Zangerl AR; Berenbaum MR; Schuler MA
    J Biol Chem; 2007 Apr; 282(14):10544-52. PubMed ID: 17244619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of furanocoumarin metabolites in parsnip webworm, Depressaria pastinacella.
    Nitao JK; Berhow M; Duval SM; Weisleder D; Vaughn SF; Zangerl A; Berenbaum MR
    J Chem Ecol; 2003 Mar; 29(3):671-82. PubMed ID: 12757327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of furanocoumarins on feeding behavior of parsnip webworms Depressaria pastinacella.
    Cianfrogna JA; Zangerl AR; Berenbaum MR
    J Chem Ecol; 2002 Jul; 28(7):1365-75. PubMed ID: 12199501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parsnip webworms and host plants at home and abroad: trophic complexity in a geographic mosaic.
    Berenbaum MR; Zangerl AR
    Ecology; 2006 Dec; 87(12):3070-81. PubMed ID: 17249232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GENETICS OF PHYSIOLOGICAL AND BEHAVIORAL RESISTANCE TO HOST FURANOCOUMARINS IN THE PARSNIP WEBWORM.
    Berenbaum MR; Zangerl AR
    Evolution; 1992 Oct; 46(5):1373-1384. PubMed ID: 28569000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella).
    Zangerl AR; Liao LH; Jogesh T; Berenbaum MR
    J Chem Ecol; 2012 Feb; 38(2):188-94. PubMed ID: 22350520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450-mediated metabolism of xanthotoxin by Papilio multicaudatus.
    Mao W; Berhow MA; Zangerl AR; McGovern J; Berenbaum MR
    J Chem Ecol; 2006 Mar; 32(3):523-36. PubMed ID: 16572296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of myristicin by Depressaria pastinacella CYP6AB3v2 and inhibition by its metabolite.
    Mao W; Zangerl AR; Berenbaum MR; Schuler MA
    Insect Biochem Mol Biol; 2008 Jun; 38(6):645-51. PubMed ID: 18510976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lutein sequestration and furanocoumarin metabolism in parsnip webworms under different ultraviolet light regimes in the montane west.
    Carroll MJ; Berenbaum MR
    J Chem Ecol; 2006 Feb; 32(2):277-305. PubMed ID: 16555136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degree of Dietary Specialization on Furanocoumarin-Containing Hostplants in a Newly Invasive Web Building Caterpillar.
    Dean CAE; Katz AD; Wu WY; Berenbaum MR
    J Chem Ecol; 2022 Dec; 48(11-12):850-866. PubMed ID: 36450872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical barriers to adaptation by a specialist herbivore.
    Berenbaum MR; Zangerl AR; Lee K
    Oecologia; 1989 Sep; 80(4):501-506. PubMed ID: 28312835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.).
    Kviesis J; Kļimenkovs I; Arbidans L; Podjava A; Kļaviņš M; Liepiņš E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jan; 1105():54-66. PubMed ID: 30562630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation.
    Calla B; Noble K; Johnson RM; Walden KKO; Schuler MA; Robertson HM; Berenbaum MR
    Mol Ecol; 2017 Nov; 26(21):6021-6035. PubMed ID: 28921805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins.
    Ma R; Cohen MB; Berenbaum MR; Schuler MA
    Arch Biochem Biophys; 1994 May; 310(2):332-40. PubMed ID: 8179316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary and developmental influences on induced detoxification in an oligophage.
    Cianfrogna JA; Zangerl AR; Berenbaum MR
    J Chem Ecol; 2002 Jul; 28(7):1349-64. PubMed ID: 12199500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.).
    Berenbaum MR
    Oecologia; 1981 May; 49(2):236-244. PubMed ID: 28309316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.