These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31393090)

  • 1. Computational modelling of magnesium stent mechanical performance in a remodelling artery: Effects of multiple remodelling stimuli.
    Boland EL; Grogan JA; McHugh PE
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3247. PubMed ID: 31393090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the design of a bioabsorbable metal stent using computer simulation methods.
    Grogan JA; Leen SB; McHugh PE
    Biomaterials; 2013 Nov; 34(33):8049-60. PubMed ID: 23906516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives.
    Hu T; Yang C; Lin S; Yu Q; Wang G
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():163-178. PubMed ID: 30033243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents.
    Boland EL; Shine CJ; Kelly N; Sweeney CA; McHugh PE
    Ann Biomed Eng; 2016 Feb; 44(2):341-56. PubMed ID: 26271520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strain-mediated corrosion model for bioabsorbable metallic stents.
    Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C
    Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A corrosion model for bioabsorbable metallic stents.
    Grogan JA; O'Brien BJ; Leen SB; McHugh PE
    Acta Biomater; 2011 Sep; 7(9):3523-33. PubMed ID: 21664498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.
    Bowen PK; Shearier ER; Zhao S; Guillory RJ; Zhao F; Goldman J; Drelich JW
    Adv Healthc Mater; 2016 May; 5(10):1121-40. PubMed ID: 27094868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.
    Karanasiou GS; Papafaklis MI; Conway C; Michalis LK; Tzafriri R; Edelman ER; Fotiadis DI
    Ann Biomed Eng; 2017 Apr; 45(4):853-872. PubMed ID: 28160103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial.
    Erbel R; Di Mario C; Bartunek J; Bonnier J; de Bruyne B; Eberli FR; Erne P; Haude M; Heublein B; Horrigan M; Ilsley C; Böse D; Koolen J; Lüscher TF; Weissman N; Waksman R;
    Lancet; 2007 Jun; 369(9576):1869-1875. PubMed ID: 17544767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents.
    Gastaldi D; Sassi V; Petrini L; Vedani M; Trasatti S; Migliavacca F
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):352-65. PubMed ID: 21316623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials.
    Pierson D; Edick J; Tauscher A; Pokorney E; Bowen P; Gelbaugh J; Stinson J; Getty H; Lee CH; Drelich J; Goldman J
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):58-67. PubMed ID: 21905215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of biodegradable magnesium-based biomaterials].
    Zhu S; Xu L; Huang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials.
    Lévesque J; Hermawan H; Dubé D; Mantovani D
    Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative study on magnesium alloy stent biodegradation.
    Gao Y; Wang L; Gu X; Chu Z; Guo M; Fan Y
    J Biomech; 2018 Jun; 74():98-105. PubMed ID: 29735265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications.
    Kröger N; Kopp A; Staudt M; Rusu M; Schuh A; Liehn EA
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():819-826. PubMed ID: 30184811
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.