These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31393105)

  • 1. Dynamic Measurement of Nanoflows: Realization of an Optofluidic Flow Meter to the Nanoliter-per-Minute Scale.
    Cooksey GA; Patrone PN; Hands JR; Meek SE; Kearsley AJ
    Anal Chem; 2019 Aug; 91(16):10713-10722. PubMed ID: 31393105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic flow meter for sub-nanoliter per minute flow measurements.
    Sadeghi J; Patrone PN; Kearsley AJ; Cooksey GA
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35102729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Measurement of Nanoflows: Analysis and Theory of an Optofluidic Flowmeter.
    Patrone PN; Cooksey G; Kearsley A
    Phys Rev Appl; 2019; 11(3):. PubMed ID: 32166098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement.
    Francis J; Stamper I; Heikenfeld J; Gomez EF
    Lab Chip; 2018 Dec; 19(1):178-185. PubMed ID: 30525141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration methods for flow rates down to 5 nL/min and validation methodology.
    Mills C; Batista E; Bissig H; Ogheard F; Boudaoud AW; Büker O; Stolt K; Morgan J; Kartmann S; Thiemann K; Miotto G; Niemann A; Klein S; Ratering G; Lötters J
    Biomed Tech (Berl); 2023 Feb; 68(1):13-27. PubMed ID: 35981719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip.
    Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N
    Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic thermometer: Precise temperature measurements in microliter- and nanoliter-scale volumes.
    McKenzie BA; Grover WH
    PLoS One; 2017; 12(12):e0189430. PubMed ID: 29284028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma.
    Nakagama T; Maeda T; Uchiyama K; Hobo T
    Analyst; 2003 Jun; 128(6):543-6. PubMed ID: 12866864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel nanoliter microfluidic analysis system.
    Andersson P; Jesson G; Kylberg G; Ekstrand G; Thorsén G
    Anal Chem; 2007 Jun; 79(11):4022-30. PubMed ID: 17472339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary standard for liquid flow rates between 30 and 1500 nl/min based on volume expansion.
    Lucas P; Ahrens M; Geršl J; Sparreboom W; Lötters J
    Biomed Tech (Berl); 2015 Aug; 60(4):317-35. PubMed ID: 26352350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoliter viscometer for analyzing blood plasma and other liquid samples.
    Srivastava N; Davenport RD; Burns MA
    Anal Chem; 2005 Jan; 77(2):383-92. PubMed ID: 15649032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Ultrasonic liquid flow meter for small pipes.
    Yu Y; Zong G
    Rev Sci Instrum; 2012 Feb; 83(2):026107. PubMed ID: 22380141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Calibration of Nanoliter per Second Flow Rate by Image Processing Technology.
    Luo J; Yang C; Shen Y
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip.
    Kong Y; Dai H; He X; Zheng Y; Chen X
    Opt Lett; 2018 Sep; 43(18):4461-4464. PubMed ID: 30211890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a positive pressure driven micro-fabricated liquid chromatographic analyzer through rapid-prototyping with poly(dimethylsiloxane) Optimizing chromatographic efficiency with sub-nanoliter injections.
    Vahey PG; Park SH; Marquardt BJ; Xia Y; Burgess LW; Synovec RE
    Talanta; 2000 May; 51(6):1205-12. PubMed ID: 18967952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise absolute Seebeck coefficient measurement and uncertainty analysis using high-Tc superconductors as a reference.
    Amagai Y; Shimazaki T; Okawa K; Kawae T; Fujiki H; Kaneko NH
    Rev Sci Instrum; 2020 Jan; 91(1):014903. PubMed ID: 32012567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery.
    Flamion B; Bungay PM; Gibson CC; Spring KR
    Biophys J; 1991 Nov; 60(5):1229-42. PubMed ID: 1760509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection.
    Edel JB; Hill EK; de Mello AJ
    Analyst; 2001 Nov; 126(11):1953-7. PubMed ID: 11763073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.