BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31393245)

  • 1. Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector.
    Ghodke S; Mahajan P; Gupta K; Ver Avadhani C; Dandekar P; Jain R
    Curr Gene Ther; 2019; 19(4):274-287. PubMed ID: 31393245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors.
    Badwaik VD; Aicart E; Mondjinou YA; Johnson MA; Bowman VD; Thompson DH
    Biomaterials; 2016 Apr; 84():86-98. PubMed ID: 26826298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Activity Relationship of Polyester-Based Cationic Polyrotaxane Vector-Mediated In Vitro siRNA Delivery: Effect on Gene Silencing Efficiency.
    Ghodke SB; Parkar JN; Deshpande AR; Dandekar PP; Jain RD
    ACS Appl Bio Mater; 2020 Nov; 3(11):7500-7514. PubMed ID: 35019492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network.
    Ooya T; Ito A; Yui N
    Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-armed cationic cyclodextrin:poly(ethylene glycol) polyrotaxanes as efficient gene silencing vectors.
    Kulkarni A; DeFrees K; Schuldt RA; Vlahu A; VerHeul R; Hyun SH; Deng W; Thompson DH
    Integr Biol (Camb); 2013 Jan; 5(1):115-21. PubMed ID: 23042106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of stereocomplex and pseudo-polyrotaxane with various cyclodextrins as wheel components using triblock copolymer of poly(ethylene glycol) and polylactide.
    Choi J; Ajiro H
    Soft Matter; 2022 Nov; 18(46):8885-8893. PubMed ID: 36377482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer.
    Choi HS; Ooya T; Yui N
    Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Polyrotaxane Particles via Template Assembly.
    Tardy BL; Tan S; Dam HH; Suma T; Guo J; Qiao GG; Caruso F
    Biomacromolecules; 2017 Jul; 18(7):2118-2127. PubMed ID: 28617594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Mixed β-Cyclodextrin Ratios on Pluronic Rotaxanation Efficiency and Product Solubility.
    Mondjinou YA; Hyun SH; Xiong M; Collins CJ; Thong PL; Thompson DH
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23831-6. PubMed ID: 26502827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted alpha-cyclodextrins threaded on poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymer.
    Yang C; Li J
    J Phys Chem B; 2009 Jan; 113(3):682-90. PubMed ID: 19143572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol.
    Kidowaki M; Zhao C; Kataoka T; Ito K
    Chem Commun (Camb); 2006 Oct; (39):4102-3. PubMed ID: 17024262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic α-cyclodextrin:poly(ethylene glycol) polyrotaxanes for siRNA delivery.
    Kulkarni A; DeFrees K; Schuldt RA; Hyun SH; Wright KJ; Yerneni CK; VerHeul R; Thompson DH
    Mol Pharm; 2013 Apr; 10(4):1299-305. PubMed ID: 23398604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pendant polymer:amino-β-cyclodextrin:siRNA guest:host nanoparticles as efficient vectors for gene silencing.
    Kulkarni A; DeFrees K; Hyun SH; Thompson DH
    J Am Chem Soc; 2012 May; 134(18):7596-9. PubMed ID: 22545899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-Free Formation of Cyclodextrin-Based Pseudopolyrotaxanes of Polyethylene Glycol: Kinetic and Structural Aspects.
    Guembe-Michel N; Durán A; Sirera R; González-Gaitano G
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient pDNA Delivery Using Cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based Polyrotaxanes.
    Badwaik V; Mondjinou Y; Kulkarni A; Liu L; Demoret A; Thompson DH
    Macromol Biosci; 2016 Jan; 16(1):63-73. PubMed ID: 26257319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties.
    Bílková E; Sedlák M; Dvořák B; Ventura K; Knotek P; Beneš L
    Org Biomol Chem; 2010 Dec; 8(23):5423-30. PubMed ID: 20859603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.