These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31393481)

  • 1. Modeling of the phase transition inside graphene nanobubbles filled with ethane.
    Iakovlev E; Zhilyaev P; Akhatov I
    Phys Chem Chem Phys; 2019 Aug; 21(33):18099-18104. PubMed ID: 31393481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-gas phase transition of Ar inside graphene nanobubbles on the graphite substrate.
    Zhilyaev P; Iakovlev E; Akhatov I
    Nanotechnology; 2019 May; 30(21):215701. PubMed ID: 30743253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of the shape of graphene nanobubbles on trapped substance.
    Ghorbanfekr-Kalashami H; Vasu KS; Nair RR; Peeters FM; Neek-Amal M
    Nat Commun; 2017 Jun; 8():15844. PubMed ID: 28621311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-liquid phase transition inside van der Waals nanobubbles: an atomistic perspective.
    Korneva M; Zhilyaev P
    Phys Chem Chem Phys; 2023 Jul; 25(28):18788-18796. PubMed ID: 37432424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic study of the solid state inside graphene nanobubbles.
    Iakovlev E; Zhilyaev P; Akhatov I
    Sci Rep; 2017 Dec; 7(1):17906. PubMed ID: 29263360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.
    Khestanova E; Guinea F; Fumagalli L; Geim AK; Grigorieva IV
    Nat Commun; 2016 Aug; 7():12587. PubMed ID: 27557732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?
    Teshima H; Kusudo H; Bistafa C; Yamaguchi Y
    Nanoscale; 2022 Feb; 14(6):2446-2455. PubMed ID: 35098963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of graphene nanobubble: Combining classical density functional and elasticity theories.
    Aslyamov TF; Iakovlev ES; Akhatov IS; Zhilyaev PA
    J Chem Phys; 2020 Feb; 152(5):054705. PubMed ID: 32035456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the shape of a graphene nanobubble.
    Jain SK; Juričić V; Barkema GT
    Phys Chem Chem Phys; 2017 Mar; 19(11):7465-7470. PubMed ID: 28256643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Nanobubbles in Tiny-Angle Twisted Bilayer Graphene.
    Yan C; Zhao YX; Liu YW; He L
    Nano Lett; 2023 Sep; 23(18):8532-8538. PubMed ID: 37669559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface Nanobubbles.
    Wang S; Zhou L; Wang X; Wang C; Dong Y; Zhang Y; Gao Y; Zhang L; Hu J
    Langmuir; 2019 Feb; 35(7):2498-2505. PubMed ID: 30645126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal shape of graphene nanobubbles on metallic substrate.
    Aslyamov T; Zahra KM; Zhilyaev P; Walton AS
    Phys Chem Chem Phys; 2022 Mar; 24(11):6935-6940. PubMed ID: 35254356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation, dissolution and properties of surface nanobubbles.
    Che Z; Theodorakis PE
    J Colloid Interface Sci; 2017 Feb; 487():123-129. PubMed ID: 27764652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water.
    Zhou L; Wang X; Shin HJ; Wang J; Tai R; Zhang X; Fang H; Xiao W; Wang L; Wang C; Gao X; Hu J; Zhang L
    J Am Chem Soc; 2020 Mar; 142(12):5583-5593. PubMed ID: 32111116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indentation of graphene nano-bubbles.
    Faraji F; Neek-Amal M; Neyts EC; Peeters FM
    Nanoscale; 2022 Apr; 14(15):5876-5883. PubMed ID: 35363231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Nanobubbles Produced by Water Splitting.
    An H; Tan BH; Moo JGS; Liu S; Pumera M; Ohl CD
    Nano Lett; 2017 May; 17(5):2833-2838. PubMed ID: 28394607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Stability of Surface Nanobubbles.
    Dockar D; Borg MK; Reese JM
    Langmuir; 2019 Jul; 35(29):9325-9333. PubMed ID: 30444621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How bulk nanobubbles are stable over a wide range of temperatures.
    Li M; Ma X; Eisener J; Pfeiffer P; Ohl CD; Sun C
    J Colloid Interface Sci; 2021 Aug; 596():184-198. PubMed ID: 33845226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Disjoining Pressure on Surface Nanobubbles.
    Svetovoy VB; Dević I; Snoeijer JH; Lohse D
    Langmuir; 2016 Nov; 32(43):11188-11196. PubMed ID: 27237943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.