These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31393675)

  • 1. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β-TCP for bone repair in a rabbit tibial defect model.
    Barbosa WT; de Almeida KV; de Lima GG; Rodriguez MA; Lia Fook MV; García-Carrodeguas R; Amaro da Silva Junior V; de Sousa Segundo FA; de Sá MJC
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):1107-1116. PubMed ID: 31393675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.
    Velasquez P; Luklinska ZB; Meseguer-Olmo L; Mate-Sanchez de Val JE; Delgado-Ruiz RA; Calvo-Guirado JL; Ramirez-Fernandez MP; de Aza PN
    J Biomed Mater Res A; 2013 Jul; 101(7):1943-54. PubMed ID: 23225787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics.
    Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T
    J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J; Zhou H; Yang K; Yuan Y; Liu C
    Biomaterials; 2013 Dec; 34(37):9381-92. PubMed ID: 24044997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone neoformation of a novel porous resorbable Si-Ca-P-based ceramic with osteoconductive properties: physical and mechanical characterization, histological and histomorphometric study.
    De Aza PN; Mate-Sanchez de Val JE; Baudin C; Perez Albacete-Martínez C; Armijo Salto A; Calvo-Guirado JL
    Clin Oral Implants Res; 2016 Nov; 27(11):1368-1375. PubMed ID: 26775798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.
    Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, mechanical properties and in vitro degradability of wollastonite/tricalcium phosphate macroporous scaffolds from nanocomposite powders.
    Zhang F; Chang J; Lin K; Lu J
    J Mater Sci Mater Med; 2008 Jan; 19(1):167-73. PubMed ID: 17597362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process.
    Zhang D; Chang J; Zeng Y
    J Mater Sci Mater Med; 2008 Jan; 19(1):443-9. PubMed ID: 17607518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics.
    Liu S; Jin F; Lin K; Lu J; Sun J; Chang J; Dai K; Fan C
    Biomed Mater; 2013 Apr; 8(2):025008. PubMed ID: 23428666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation.
    Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S
    J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.