BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3139368)

  • 41. End-tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest.
    Bhende MS; Karasic DG; Karasic RB
    Am J Emerg Med; 1996 Jul; 14(4):349-50. PubMed ID: 8768152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon dioxide elimination during circulatory arrest.
    Dohi S; Takeshima R; Matsumiya N
    Crit Care Med; 1987 Oct; 15(10):944-6. PubMed ID: 3115679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection.
    Krause GS; Kumar K; White BC; Aust SD; Wiegenstein JG
    Am Heart J; 1986 Apr; 111(4):768-80. PubMed ID: 3513507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Post-resuscitation haemodynamics in a novel acute myocardial infarction cardiac arrest model in the pig.
    Palmaers T; Albrecht S; Leuthold C; Heuser F; Schuettler J; Schmitz B
    Eur J Anaesthesiol; 2007 Jul; 24(7):580-8. PubMed ID: 17241498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Changes in blood circulation in the post-resuscitation period of acute myocardial infarction].
    Lisachenko GV; Evtushenko AIa
    Kardiologiia; 1989 Sep; 29(9):87-9. PubMed ID: 2593480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart.
    Tang WC; Weil MH; Gazmuri RJ; Bisera J; Rackow EC
    Crit Care Med; 1991 Feb; 19(2):218-24. PubMed ID: 1899209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. End-tidal CO2 as a guide to successful cardiopulmonary resuscitation: a preliminary report.
    Trevino RP; Bisera J; Weil MH; Rackow EC; Grundler WG
    Crit Care Med; 1985 Nov; 13(11):910-1. PubMed ID: 3931980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-resuscitation myocardial microcirculatory dysfunction is ameliorated with eptifibatide.
    Kern KB; Sasaoka T; Higashi H; Hilwig RW; Berg RA; Zuercher M
    Resuscitation; 2011 Jan; 82(1):85-9. PubMed ID: 20950922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of respiratory alkalosis and acidosis on myocardial blood flow and metabolism in patients with coronary artery disease.
    Kazmaier S; Weyland A; Buhre W; Stephan H; Rieke H; Filoda K; Sonntag H
    Anesthesiology; 1998 Oct; 89(4):831-7. PubMed ID: 9777999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dye circulation times during cardiac arrest.
    Emerman CL; Pinchak AC; Hagen JF; Hancock DE
    Resuscitation; 1990 Jan; 19(1):53-60. PubMed ID: 2154023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sodium bicarbonate administration during cardiac arrest. Effect on arterial pH PCO2, and osmolality.
    Bishop RL; Weisfeldt ML
    JAMA; 1976 Feb; 235(5):506-9. PubMed ID: 1554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intramyocardial gas tensions in the canine heart during anoxic cardiac arrest.
    Brantigan JW; Perna AM; Gardner TJ; Gott VL
    Surg Gynecol Obstet; 1972 Jan; 134(1):67-72. PubMed ID: 5007177
    [No Abstract]   [Full Text] [Related]  

  • 55. Capnography as a predictor of the return of spontaneous circulation.
    Hatlestad D
    Emerg Med Serv; 2004 Aug; 33(8):75-80; quiz 115. PubMed ID: 15368978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of positron emission tomography in the detection of myocardial metabolism in pig ventricular fibrillation and asphyxiation cardiac arrest models after resuscitation.
    Wu CJ; Li CS; Zhang Y; Yang J
    Biomed Environ Sci; 2014 Jul; 27(7):531-6. PubMed ID: 25073912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of angiotensin II on myocardial blood flow and acid-base status in a pig model of cardiopulmonary resuscitation.
    Lindner KH; Prengel AW; Pfenninger EG; Lindner IM
    Anesth Analg; 1993 Mar; 76(3):485-92. PubMed ID: 8452255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gradual onset of myocardial ischemia results in reduced myocardial infarction. Association with reduced contractile function and metabolic downregulation.
    Ito BR
    Circulation; 1995 Apr; 91(7):2058-70. PubMed ID: 7895365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of nitric oxide synthases, but not inducible nitric oxide synthase, selectively worsens left ventricular function after successful resuscitation from cardiac arrest in swine.
    Dokken BB; Gaballa MA; Hilwig RW; Berg RA; Kern KB
    Acad Emerg Med; 2015 Feb; 22(2):197-203. PubMed ID: 25639298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of endogenous and exogenous vasopressin during experimental cardiopulmonary resuscitation.
    Krismer AC; Lindner KH; Wenzel V; Mayr VD; Voelckel WG; Lurie KG; Strohmenger HU
    Anesth Analg; 2001 Jun; 92(6):1499-504. PubMed ID: 11375833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.