BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31393891)

  • 1. Nucleotide substrate binding characterization in human pancreatic-type ribonucleases.
    Bafna K; Narayanan C; Chennubhotla SC; Doucet N; Agarwal PK
    PLoS One; 2019; 14(8):e0220037. PubMed ID: 31393891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of electrostatics to the binding of pancreatic-type ribonucleases to membranes.
    Sundlass NK; Eller CH; Cui Q; Raines RT
    Biochemistry; 2013 Sep; 52(37):6304-12. PubMed ID: 23947917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity.
    Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ
    J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Structural and Dynamical Changes Experienced by Human RNase 6 upon Ligand Binding.
    Narayanan C; Bernard DN; Létourneau M; Gagnon J; Gagné D; Bafna K; Calmettes C; Couture JF; Agarwal PK; Doucet N
    Biochemistry; 2020 Feb; 59(6):755-765. PubMed ID: 31909602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribonucleolytic activity of angiogenin.
    Leland PA; Staniszewski KE; Park C; Kelemen BR; Raines RT
    Biochemistry; 2002 Jan; 41(4):1343-50. PubMed ID: 11802736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Cleavage Properties of Nucleobase-Specific RNase MC1 and Cusativin Are Determined by the Dinucleotide-Binding Interactions in the Enzyme-Active Site.
    Thakur P; Atway J; Limbach PA; Addepalli B
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP).
    Sorrentino S; Glitz DG
    FEBS Lett; 1991 Aug; 288(1-2):23-6. PubMed ID: 1715291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of noncatalytic phosphate-binding subsites to the mechanism of bovine pancreatic ribonuclease A.
    Nogués MV; Moussaoui M; Boix E; Vilanova M; Ribó M; Cuchillo CM
    Cell Mol Life Sci; 1998 Aug; 54(8):766-74. PubMed ID: 9760985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel fluorogenic substrate for ribonucleases. Synthesis and enzymatic characterization.
    Zelenko O; Neumann U; Brill W; Pieles U; Moser HE; Hofsteenge J
    Nucleic Acids Res; 1994 Jul; 22(14):2731-9. PubMed ID: 8052528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structures and functions of ribonucleases].
    Irie M
    Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleases protect RNA from acid precipitation.
    Kouretas D; Antonoglou O
    Cell Mol Biol (Noisy-le-grand); 1997 Dec; 43(8):1181-90. PubMed ID: 9489943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modification by azocombination of the catalytic properties of ribonucleases].
    Kalacheva NV; Kurinenko BM
    Biokhimiia; 1985 Mar; 50(3):406-11. PubMed ID: 2581627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.
    Narayanan C; Bernard DN; Bafna K; Gagné D; Chennubhotla CS; Doucet N; Agarwal PK
    Structure; 2018 Mar; 26(3):426-436.e3. PubMed ID: 29478822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a human colon carcinoma-secreted enzyme with pancreatic ribonuclease-like activity.
    Shapiro R; Fett JW; Strydom DJ; Vallee BL
    Biochemistry; 1986 Nov; 25(23):7255-64. PubMed ID: 3467790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonucleases and angiogenins from fish.
    Pizzo E; Buonanno P; Di Maro A; Ponticelli S; De Falco S; Quarto N; Cubellis MV; D'Alessio G
    J Biol Chem; 2006 Sep; 281(37):27454-60. PubMed ID: 16861230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Functional Differences between Homologous Bacterial Ribonucleases.
    Ulyanova V; Nadyrova A; Dudkina E; Kuznetsova A; Ahmetgalieva A; Faizullin D; Surchenko Y; Novopashina D; Zuev Y; Kuznetsov N; Ilinskaya O
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on turtle pancreatic ribonuclease: a comparative study of the base specificities of the B2 and P0 sites of bovine pancreatic ribonuclease A and turtle pancreatic ribonuclease.
    Katoh H; Yoshinaga M; Yanagita T; Ohgi K; Irie M; Beintema JJ; Meinsma D
    Biochim Biophys Acta; 1986 Oct; 873(3):367-71. PubMed ID: 3756185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate-binding site arrangement favors the endonuclease cleavage of polymeric substrates.
    Prats-Ejarque G; Blanco JA; Salazar VA; Nogués VM; Moussaoui M; Boix E
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):105-117. PubMed ID: 30287244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography.
    Leu YJ; Chern SS; Wang SC; Hsiao YY; Amiraslanov I; Liaw YC; Liao YD
    J Biol Chem; 2003 Feb; 278(9):7300-9. PubMed ID: 12499382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.