BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31394017)

  • 1. Transport Versus Hydrolysis: Reassessing Intestinal Assimilation of Di- and Tripeptides by LC-MS/MS Analysis.
    Rohm F; Daniel H; Spanier B
    Mol Nutr Food Res; 2019 Nov; 63(21):e1900263. PubMed ID: 31394017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appearance of Di- and Tripeptides in Human Plasma after a Protein Meal Does Not Correlate with PEPT1 Substrate Selectivity.
    Rohm F; Skurk T; Daniel H; Spanier B
    Mol Nutr Food Res; 2019 Mar; 63(5):e1801094. PubMed ID: 30521147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualized absorption of anti-atherosclerotic dipeptide, Trp-His, in Sprague-Dawley rats by LC-MS and MALDI-MS imaging analyses.
    Tanaka M; Hong SM; Akiyama S; Hu QQ; Matsui T
    Mol Nutr Food Res; 2015 Aug; 59(8):1541-9. PubMed ID: 25808120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of PLA-PEG nanoparticles manufacturing process on intestinal transporter PepT1 targeting and oxytocin transport.
    Gourdon B; Chemin C; Moreau A; Arnauld T; Delbos JM; Péan JM; Declèves X
    Eur J Pharm Biopharm; 2018 Aug; 129():122-133. PubMed ID: 29803721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models.
    Gleeson JP; Brayden DJ; Ryan SM
    Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1.
    Nässl AM; Rubio-Aliaga I; Fenselau H; Marth MK; Kottra G; Daniel H
    Am J Physiol Gastrointest Liver Physiol; 2011 Jul; 301(1):G128-37. PubMed ID: 21350187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine.
    Hu Y; Smith DE; Ma K; Jappar D; Thomas W; Hillgren KM
    Mol Pharm; 2008; 5(6):1122-30. PubMed ID: 19434858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition.
    Gleeson JP; Frías JM; Ryan SM; Brayden DJ
    Eur J Pharm Biopharm; 2018 Jul; 128():179-187. PubMed ID: 29684535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b(0,+).
    Wenzel U; Meissner B; Döring F; Daniel H
    J Cell Physiol; 2001 Feb; 186(2):251-9. PubMed ID: 11169462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The intestinal phase of peptide absorption].
    Friedrich M
    Nahrung; 1982; 26(10):887-901. PubMed ID: 6761592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2.
    Terada T; Sawada K; Saito H; Hashimoto Y; Inui K
    Am J Physiol; 1999 Jun; 276(6):G1435-41. PubMed ID: 10362647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Transepithelial Transport and Enzymatic Stability of Lactononadecapeptide (NIPPLTQTPVVVPPFLQPE), a 19-Amino Acid Casein-Derived Peptide in Caco-2 Cells.
    Nakatani E; Sasai M; Miyazaki H; Tanaka S; Hirota T; Okura T
    J Agric Food Chem; 2024 Jun; 72(22):12719-12724. PubMed ID: 38789103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of PEPT1in the transport of cinnabar in Caco-2 cells.
    Wu Q; He X; Zhou S; Shi F; Lu Y
    Toxicol In Vitro; 2020 Mar; 63():104747. PubMed ID: 31838184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model.
    Wang B; Li B
    Food Chem; 2017 Mar; 218():1-8. PubMed ID: 27719884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiodipeptides targeting the intestinal oligopeptide transporter as a general approach to improving oral drug delivery.
    Foley DW; Pathak RB; Phillips TR; Wilson GL; Bailey PD; Pieri M; Senan A; Meredith D
    Eur J Med Chem; 2018 Aug; 156():180-189. PubMed ID: 30006163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meat proteins had different effects on oligopeptide transporter PEPT1 in the small intestine of young rats.
    Li M; Li C; Song S; Zhao F; Xu X; Zhou G
    Int J Food Sci Nutr; 2016 Dec; 67(8):995-1004. PubMed ID: 27455889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems.
    Grunwald S; Krause R; Bruch M; Henle T; Brandsch M
    Br J Nutr; 2006 Jun; 95(6):1221-8. PubMed ID: 16768847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake, transport and regulation of JBP485 by PEPT1 in vitro and in vivo.
    Liu Z; Wang C; Liu Q; Meng Q; Cang J; Mei L; Kaku T; Liu K
    Peptides; 2011 Apr; 32(4):747-54. PubMed ID: 21262302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1.
    Okamura A; Koyanagi S; Dilxiat A; Kusunose N; Chen JJ; Matsunaga N; Shibata S; Ohdo S
    J Biol Chem; 2014 Sep; 289(36):25296-305. PubMed ID: 25016014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.