These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Molecular Interactions Between Smut Fungi and Their Host Plants. Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276 [TBL] [Abstract][Full Text] [Related]
4. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. Courville KJ; Frantzeskakis L; Gul S; Haeger N; Kellner R; Heßler N; Day B; Usadel B; Gupta YK; van Esse HP; Brachmann A; Kemen E; Feldbrügge M; Göhre V New Phytol; 2019 May; 222(3):1474-1492. PubMed ID: 30663769 [TBL] [Abstract][Full Text] [Related]
5. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb. Liang SW; Huang YH; Chiu JY; Tseng HW; Huang JH; Shen WC Fungal Genet Biol; 2019 May; 126():61-74. PubMed ID: 30794950 [TBL] [Abstract][Full Text] [Related]
6. Where Does the Peanut Smut Pathogen, Arias SL; Mary VS; Velez PA; Rodriguez MG; Otaiza-González SN; Theumer MG Plant Dis; 2021 Sep; 105(9):2268-2280. PubMed ID: 33904333 [TBL] [Abstract][Full Text] [Related]
7. The Plant-Dependent Life Cycle of Thecaphora thlaspeos: A Smut Fungus Adapted to Brassicaceae. Frantzeskakis L; Courville KJ; Plücker L; Kellner R; Kruse J; Brachmann A; Feldbrügge M; Göhre V Mol Plant Microbe Interact; 2017 Apr; 30(4):271-282. PubMed ID: 28421861 [TBL] [Abstract][Full Text] [Related]
8. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Laurie JD; Ali S; Linning R; Mannhaupt G; Wong P; Güldener U; Münsterkötter M; Moore R; Kahmann R; Bakkeren G; Schirawski J Plant Cell; 2012 May; 24(5):1733-45. PubMed ID: 22623492 [TBL] [Abstract][Full Text] [Related]
9. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions. Matei A; Doehlemann G Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540 [TBL] [Abstract][Full Text] [Related]
10. A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Dutheil JY; Mannhaupt G; Schweizer G; M K Sieber C; Münsterkötter M; Güldener U; Schirawski J; Kahmann R Genome Biol Evol; 2016 Feb; 8(3):681-704. PubMed ID: 26872771 [TBL] [Abstract][Full Text] [Related]
11. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]
12. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components. Geiser E; Reindl M; Blank LM; Feldbrügge M; Wierckx N; Schipper K Appl Environ Microbiol; 2016 Sep; 82(17):5174-85. PubMed ID: 27316952 [TBL] [Abstract][Full Text] [Related]
13. New Insights of Ustilago maydis as Yeast Model for Genetic and Biotechnological Research: A Review. Olicón-Hernández DR; Araiza-Villanueva MG; Pardo JP; Aranda E; Guerra-Sánchez G Curr Microbiol; 2019 Aug; 76(8):917-926. PubMed ID: 30689003 [TBL] [Abstract][Full Text] [Related]
14. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Jose RC; Bengyella L; Handique PJ; Talukdar NC Microb Pathog; 2019 Jan; 126():79-84. PubMed ID: 30367966 [TBL] [Abstract][Full Text] [Related]
15. Castles and cuitlacoche: the first international Ustilago conference. Kronstad JW Fungal Genet Biol; 2003 Apr; 38(3):265-71. PubMed ID: 12684016 [TBL] [Abstract][Full Text] [Related]
16. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum. Sharma R; Mishra B; Runge F; Thines M Genome Biol Evol; 2014 Jul; 6(8):2034-49. PubMed ID: 25062916 [TBL] [Abstract][Full Text] [Related]
17. Conservation of the Ustilago maydis effector See1 in related smuts. Redkar A; Villajuana-Bonequi M; Doehlemann G Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869 [TBL] [Abstract][Full Text] [Related]
18. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. Ye Z; Pan Y; Zhang Y; Cui H; Jin G; McHardy AC; Fan L; Yu X DNA Res; 2017 Dec; 24(6):635-648. PubMed ID: 28992048 [TBL] [Abstract][Full Text] [Related]
19. Ustilago maydis effectors and their impact on virulence. Lanver D; Tollot M; Schweizer G; Lo Presti L; Reissmann S; Ma LS; Schuster M; Tanaka S; Liang L; Ludwig N; Kahmann R Nat Rev Microbiol; 2017 Jul; 15(7):409-421. PubMed ID: 28479603 [TBL] [Abstract][Full Text] [Related]
20. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. Ho EC; Cahill MJ; Saville BJ BMC Genomics; 2007 Sep; 8():334. PubMed ID: 17892571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]