BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31394298)

  • 1. Fluorescence photo-bleaching of urine and its applicability in oral cancer diagnosis.
    Dutta SB; Krishna H; Gupta S; Majumder SK
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():18-24. PubMed ID: 31394298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear pattern recognition for laser-induced fluorescence diagnosis of cancer.
    Majumder SK; Ghosh N; Kataria S; Gupta PK
    Lasers Surg Med; 2003; 33(1):48-56. PubMed ID: 12866121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance vector machine for optical diagnosis of cancer.
    Majumder SK; Ghosh N; Gupta PK
    Lasers Surg Med; 2005 Apr; 36(4):323-33. PubMed ID: 15825208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fluorescence spectroscopy study on photobleaching properties of photosensitizers in photodynamic therapy].
    Wang L; Gu Y; Li XS; Liu FG; Yu CQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2073-8. PubMed ID: 18306799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence.
    Gillenwater A; Jacob R; Ganeshappa R; Kemp B; El-Naggar AK; Palmer JL; Clayman G; Mitchell MF; Richards-Kortum R
    Arch Otolaryngol Head Neck Surg; 1998 Nov; 124(11):1251-8. PubMed ID: 9821929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo.
    Ebenezar J; Ganesan S; Aruna P; Muralinaidu R; Renganathan K; Saraswathy TR
    J Biomed Opt; 2012 Sep; 17(9):97007-1. PubMed ID: 23085924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectrum photo-bleaching analysis for distinguishing microorganisms (bacteria and fungi) from other particles in air.
    Lu C; Zhang P; Chen S; Zhu J; Xu X; Huang H
    Opt Express; 2018 Oct; 26(22):28902-28917. PubMed ID: 30470060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Nd:YAG and diode laser irradiation during intracoronal bleaching with sodium perborate: color and Raman spectroscopy analysis.
    Sağlam BC; Koçak MM; Koçak S; Türker SA; Arslan D
    Photomed Laser Surg; 2015 Feb; 33(2):77-81. PubMed ID: 25654643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division.
    Bolognesi A; Sliwa-Gonzalez A; Prasad R; Barral Y
    Methods Mol Biol; 2016; 1369():25-44. PubMed ID: 26519303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences.
    Miura K
    F1000Res; 2020; 9():1494. PubMed ID: 33633845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.
    Boudreau C; Wee TL; Duh YR; Couto MP; Ardakani KH; Brown CM
    Sci Rep; 2016 Aug; 6():30892. PubMed ID: 27485088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state and time-resolved fluorescence spectroscopic characterization of urine of healthy subjects and cervical cancer patients.
    Rajasekaran R; Aruna PR; Koteeswaran D; Bharanidharan G; Baludavid M; Ganesan S
    J Biomed Opt; 2014 Mar; 19(3):37003. PubMed ID: 24647974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy.
    Heintzelman DL; Utzinger U; Fuchs H; Zuluaga A; Gossage K; Gillenwater AM; Jacob R; Kemp B; Richards-Kortum RR
    Photochem Photobiol; 2000 Jul; 72(1):103-13. PubMed ID: 10911734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE).
    Singh SP; Sahu A; Deshmukh A; Chaturvedi P; Krishna CM
    Analyst; 2013 Jul; 138(14):4175-82. PubMed ID: 23392131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study.
    Krishna H; Majumder SK; Chaturvedi P; Sidramesh M; Gupta PK
    J Biophotonics; 2014 Sep; 7(9):690-702. PubMed ID: 23821433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer.
    Mallia RJ; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N
    Cancer; 2008 Apr; 112(7):1503-12. PubMed ID: 18260154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer detection by native fluorescence of urine.
    Masilamani V; Vijmasi T; Al Salhi M; Govindaraj K; Vijaya-Raghavan AP; Antonisamy B
    J Biomed Opt; 2010; 15(5):057003. PubMed ID: 21054119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    J Biomed Opt; 2004; 9(5):940-50. PubMed ID: 15447015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity.
    Francisco AL; Correr WR; Azevedo LH; Kern VG; Pinto CA; Kowalski LP; Kurachi C
    Photodiagnosis Photodyn Ther; 2014 Jun; 11(2):82-90. PubMed ID: 24704941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.