These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31394311)

  • 1. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility.
    Guo Y; Jiang W; Yu W; Niu X; Liu F; Zhou T; Zhang H; Li Y; Zhu H; Zhou Z; Sha J; Guo X; Chen D
    J Proteomics; 2019 Sep; 208():103478. PubMed ID: 31394311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility.
    Mirshahvaladi S; Topraggaleh TR; Bucak MN; Rahimizadeh P; Shahverdi A
    Cell Tissue Res; 2023 Jun; 392(3):793-810. PubMed ID: 36847810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals.
    Cao X; Cui Y; Zhang X; Lou J; Zhou J; Bei H; Wei R
    Reprod Biol Endocrinol; 2018 Feb; 16(1):16. PubMed ID: 29482568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4D-quantitative proteomics signature of asthenozoospermia and identification of extracellular matrix protein 1 as a novel biomarker for sperm motility.
    Yang J; Liu Q; Yu B; Han B; Yang B
    Mol Omics; 2022 Jan; 18(1):83-91. PubMed ID: 34816866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia.
    Nowicka-Bauer K; Lepczynski A; Ozgo M; Kamieniczna M; Fraczek M; Stanski L; Olszewska M; Malcher A; Skrzypczak W; Kurpisz MK
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30149371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia.
    Du Y; Li M; Chen J; Duan Y; Wang X; Qiu Y; Cai Z; Gui Y; Jiang H
    Hum Reprod; 2016 Jan; 31(1):24-33. PubMed ID: 26628640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients.
    Panner Selvam MK; Agarwal A; Pushparaj PN
    Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of proteins involved in human sperm motility using high-throughput differential proteomics.
    Amaral A; Paiva C; Attardo Parrinello C; Estanyol JM; Ballescà JL; Ramalho-Santos J; Oliva R
    J Proteome Res; 2014 Dec; 13(12):5670-84. PubMed ID: 25250979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.
    Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V
    J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR spectroscopy of live human asthenozoospermic and normozoospermic sperm metabolism.
    Reynolds S; Calvert SJ; Walters SJ; Paley MN; Pacey AA
    Reprod Fertil; 2022 Apr; 3(2):77-89. PubMed ID: 35514541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asthenozoospermia and membrane remodeling enzymes: a new role for phospholipase A2.
    Anfuso CD; Olivieri M; Bellanca S; Salmeri M; Motta C; Scalia M; Satriano C; La Vignera S; Burrello N; Caporarello N; Lupo G; Calogero AE
    Andrology; 2015 Nov; 3(6):1173-82. PubMed ID: 26446356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability.
    Jiang XP; Wang SQ; Wang W; Xu Y; Xu Z; Tang JY; Sun HY; Wang ZJ; Zhang W
    Cryobiology; 2015 Aug; 71(1):141-5. PubMed ID: 25910678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients.
    Murdica V; Cermisoni GC; Zarovni N; Salonia A; Viganò P; Vago R
    Hum Reprod; 2019 Aug; 34(8):1416-1427. PubMed ID: 31355853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia.
    Liu SW; Li Y; Zou LL; Guan YT; Peng S; Zheng LX; Deng SM; Zhu LY; Wang LW; Chen LX
    Asian J Androl; 2017; 19(4):418-424. PubMed ID: 27270342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.
    Asghari A; Marashi SA; Ansari-Pour N
    Syst Biol Reprod Med; 2017 Apr; 63(2):100-112. PubMed ID: 28085499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia.
    Hashemitabar M; Sabbagh S; Orazizadeh M; Ghadiri A; Bahmanzadeh M
    J Assist Reprod Genet; 2015 Jun; 32(6):853-63. PubMed ID: 25825237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sperm glyceraldehyde 3-phosphate dehydrogenase gene expression in asthenozoospermic spermatozoa.
    Paoli D; Pelloni M; Gallo M; Coltrinari G; Lombardo F; Lenzi A; Gandini L
    Asian J Androl; 2017; 19(4):409-413. PubMed ID: 27080476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.
    Siva AB; Kameshwari DB; Singh V; Pavani K; Sundaram CS; Rangaraj N; Deenadayal M; Shivaji S
    Mol Hum Reprod; 2010 Jul; 16(7):452-62. PubMed ID: 20304782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of CatSper1 channel in epididymal spermatozoa contributes to the pathogenesis of asthenozoospermia, whereas up-regulation of the channel by Sheng-Jing-San treatment improves the sperm motility of asthenozoospermia in rats.
    Wang YN; Wang B; Liang M; Han CY; Zhang B; Cai J; Sun W; Xing GG
    Fertil Steril; 2013 Feb; 99(2):579-87. PubMed ID: 23148924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ.
    Lin Y; Liang A; He Y; Li Z; Li Z; Wang G; Sun F
    Mol Reprod Dev; 2019 Sep; 86(9):1094-1105. PubMed ID: 31215738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.