These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31394395)

  • 21. Nanoflowers: the future trend of nanotechnology for multi-applications.
    Shende P; Kasture P; Gaud RS
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):413-422. PubMed ID: 29361844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A state-of-the-art review of metal oxide nanoflowers for wastewater treatment: Dye removal.
    Lee SY; Tan YH; Lau SY; Mubarak NM; Tan YY; Tan IS; Lee YH; Ibrahim ML; Karri RR; Khalid M; Chan YS; Adeoye JB
    Environ Res; 2024 Jun; 259():119448. PubMed ID: 38942255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of magnetic nanoflower biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal.
    Han J; Luo P; Wang L; Li C; Mao Y; Wang Y
    J Hazard Mater; 2019 Dec; 380():120901. PubMed ID: 31330392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inorganic Nanoflowers-Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review.
    Lee SJ; Jang H; Lee DN
    Pharmaceutics; 2022 Sep; 14(9):. PubMed ID: 36145635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor.
    Sun J; Ge J; Liu W; Lan M; Zhang H; Wang P; Wang Y; Niu Z
    Nanoscale; 2014 Jan; 6(1):255-62. PubMed ID: 24186239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocatalyst and Colorimetric/Fluorescent Dual Biosensors of H
    Gao J; Liu H; Pang L; Guo K; Li J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30441-30450. PubMed ID: 30106269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic-inorganic epoxide hydrolase hybrid nanoflowers with enhanced catalytic activity: Hydrolysis of styrene oxide to 1-phenyl-1,2-ethanediol.
    Salvi HM; Yadav GD
    J Biotechnol; 2021 Nov; 341():113-120. PubMed ID: 34536457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies.
    Subramani IG; Perumal V; Gopinath SCB; Fhan KS; Mohamed NM
    Crit Rev Anal Chem; 2022; 52(7):1488-1510. PubMed ID: 33691533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers.
    Zhu J; Wen M; Wen W; Du D; Zhang X; Wang S; Lin Y
    Biosens Bioelectron; 2018 Nov; 120():175-187. PubMed ID: 30176421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects.
    Lee SW; Cheon SA; Kim MI; Park TJ
    J Nanobiotechnology; 2015 Sep; 13():54. PubMed ID: 26337651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.
    Gao J; Liu H; Tong C
    Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.
    He G; Hu W; Li CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():613-618. PubMed ID: 26322475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance.
    Xu H; Liang H
    Int J Biol Macromol; 2022 Nov; 220():124-134. PubMed ID: 35961558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity.
    Wu ZF; Wang Z; Zhang Y; Ma YL; He CY; Li H; Chen L; Huo QS; Wang L; Li ZQ
    Sci Rep; 2016 Mar; 6():22412. PubMed ID: 26926099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Cu(II)-Directed Self Assembly of Esterified Tea Polyphenol Oligomers to Controlled Release Nanoflower Carrier.
    Xu L; Liu S
    J Agric Food Chem; 2021 Jul; 69(27):7725-7732. PubMed ID: 34189913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.
    Wei T; Du D; Zhu MJ; Lin Y; Dai Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6329-35. PubMed ID: 26894752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic-inorganic nanoflowers: from design strategy to biomedical applications.
    Liu Y; Ji X; He Z
    Nanoscale; 2019 Oct; 11(37):17179-17194. PubMed ID: 31532431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers.
    Hao M; Fan G; Zhang Y; Xin Y; Zhang L
    Int J Biol Macromol; 2019 Apr; 126():539-548. PubMed ID: 30593816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine.
    Shcharbin D; Halets-Bui I; Abashkin V; Dzmitruk V; Loznikova S; Odabaşı M; Acet Ö; Önal B; Özdemir N; Shcharbina N; Bryszewska M
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110354. PubMed ID: 31325775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.