These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31394517)

  • 1. Microrheology of interphase chromosomes with spatial constraints: a computational study.
    Papale A; Rosa A
    Phys Biol; 2019 Sep; 16(6):066002. PubMed ID: 31394517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity of model interphase chromosomes.
    Valet M; Rosa A
    J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study.
    Fritsch CC; Langowski J
    Chromosome Res; 2011 Jan; 19(1):63-81. PubMed ID: 21116704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of interphase chromosomes.
    Rosa A; Everaers R
    PLoS Comput Biol; 2008 Aug; 4(8):e1000153. PubMed ID: 18725929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus.
    Vazquez J; Belmont AS; Sedat JW
    Curr Biol; 2001 Aug; 11(16):1227-39. PubMed ID: 11525737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interphase chromosomes undergo constrained diffusional motion in living cells.
    Marshall WF; Straight A; Marko JF; Swedlow J; Dernburg A; Belmont A; Murray AW; Agard DA; Sedat JW
    Curr Biol; 1997 Dec; 7(12):930-9. PubMed ID: 9382846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.
    Florescu AM; Therizols P; Rosa A
    PLoS Comput Biol; 2016 Jun; 12(6):e1004987. PubMed ID: 27295501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer models of interphase chromosomes.
    Vasquez PA; Bloom K
    Nucleus; 2014; 5(5):376-90. PubMed ID: 25482191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Model of Repetitive-DNA-Organized Chromatin Network of Interphase Chromosomes.
    Tang SJ
    Genes (Basel); 2012 Mar; 3(1):167-75. PubMed ID: 24704848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement.
    Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2018 Jan; 11(1):3. PubMed ID: 29357905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing chromatin dynamics in interphase nuclei.
    Gasser SM
    Science; 2002 May; 296(5572):1412-6. PubMed ID: 12029120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei.
    Robaszkiewicz E; Idziak-Helmcke D; Tkacz MA; Chrominski K; Hasterok R
    J Exp Bot; 2016 Oct; 67(18):5571-5583. PubMed ID: 27588463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains.
    Nahali N; Rosa A
    J Chem Phys; 2018 May; 148(19):194902. PubMed ID: 30307231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shaping of interphase chromosomes by the microtubule network.
    Maizels Y; Gerlitz G
    FEBS J; 2015 Sep; 282(18):3500-24. PubMed ID: 26040675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro.
    Belmont AS; Braunfeld MB; Sedat JW; Agard DA
    Chromosoma; 1989 Aug; 98(2):129-43. PubMed ID: 2476279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive computational model of the dynamic 3D interphase yeast nucleus.
    Wong H; Marie-Nelly H; Herbert S; Carrivain P; Blanc H; Koszul R; Fabre E; Zimmer C
    Curr Biol; 2012 Oct; 22(20):1881-90. PubMed ID: 22940469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion in the interphase cell nucleus: the effect of spatial correlations of chromatin.
    Fritsch CC; Langowski J
    J Chem Phys; 2010 Jul; 133(2):025101. PubMed ID: 20632774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.