These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 31395244)

  • 41. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers.
    Khened M; Kollerathu VA; Krishnamurthi G
    Med Image Anal; 2019 Jan; 51():21-45. PubMed ID: 30390512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging.
    Retson TA; Besser AH; Sall S; Golden D; Hsiao A
    J Thorac Imaging; 2019 May; 34(3):192-201. PubMed ID: 31009397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep Learning in Microscopy Image Analysis: A Survey.
    Fuyong Xing ; Yuanpu Xie ; Hai Su ; Fujun Liu ; Lin Yang
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4550-4568. PubMed ID: 29989994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel fused convolutional neural network for biomedical image classification.
    Pang S; Du A; Orgun MA; Yu Z
    Med Biol Eng Comput; 2019 Jan; 57(1):107-121. PubMed ID: 30003400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial intelligence in medical imaging of the liver.
    Zhou LQ; Wang JY; Yu SY; Wu GG; Wei Q; Deng YB; Wu XL; Cui XW; Dietrich CF
    World J Gastroenterol; 2019 Feb; 25(6):672-682. PubMed ID: 30783371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Image-based biomarkers for solid tumor quantification.
    Savadjiev P; Chong J; Dohan A; Agnus V; Forghani R; Reinhold C; Gallix B
    Eur Radiol; 2019 Oct; 29(10):5431-5440. PubMed ID: 30963275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning enables automated scoring of liver fibrosis stages.
    Yu Y; Wang J; Ng CW; Ma Y; Mo S; Fong ELS; Xing J; Song Z; Xie Y; Si K; Wee A; Welsch RE; So PTC; Yu H
    Sci Rep; 2018 Oct; 8(1):16016. PubMed ID: 30375454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning for image analysis: Personalizing medicine closer to the point of care.
    Xie Q; Faust K; Van Ommeren R; Sheikh A; Djuric U; Diamandis P
    Crit Rev Clin Lab Sci; 2019 Jan; 56(1):61-73. PubMed ID: 30628494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning with domain adaptation for accelerated projection-reconstruction MR.
    Han Y; Yoo J; Kim HH; Shin HJ; Sung K; Ye JC
    Magn Reson Med; 2018 Sep; 80(3):1189-1205. PubMed ID: 29399869
    [No Abstract]   [Full Text] [Related]  

  • 50. EuroEcho-imaging 2017: highlights.
    Magne J; Bucciarelli-Ducci C; Dahl JS; Gimelli A; Haugaa KH; Miller O; Muraru D; Donal E; Edvardsen T; Popescu BA
    Eur Heart J Cardiovasc Imaging; 2018 May; 19(5):482-489. PubMed ID: 29548013
    [No Abstract]   [Full Text] [Related]  

  • 51. Efficiency Improvement in a Busy Radiology Practice: Determination of Musculoskeletal Magnetic Resonance Imaging Protocol Using Deep-Learning Convolutional Neural Networks.
    Lee YH
    J Digit Imaging; 2018 Oct; 31(5):604-610. PubMed ID: 29619578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis.
    Kusunose K
    Curr Cardiol Rep; 2020 Jul; 22(9):89. PubMed ID: 32648059
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automated Cardiac MR Scar Quantification in Hypertrophic Cardiomyopathy Using Deep Convolutional Neural Networks.
    Fahmy AS; Rausch J; Neisius U; Chan RH; Maron MS; Appelbaum E; Menze B; Nezafat R
    JACC Cardiovasc Imaging; 2018 Dec; 11(12):1917-1918. PubMed ID: 30121270
    [No Abstract]   [Full Text] [Related]  

  • 54. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI.
    Chen Q; Hu S; Long P; Lu F; Shi Y; Li Y
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819858363. PubMed ID: 31221034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier.
    Liu X; Fu T; Pan Z; Liu D; Hu W; Liu J; Zhang K
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1404-1416. PubMed ID: 30010602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches.
    Fritz B; Fritz J
    Skeletal Radiol; 2022 Feb; 51(2):315-329. PubMed ID: 34467424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A survey on deep learning in medical image analysis.
    Litjens G; Kooi T; Bejnordi BE; Setio AAA; Ciompi F; Ghafoorian M; van der Laak JAWM; van Ginneken B; Sánchez CI
    Med Image Anal; 2017 Dec; 42():60-88. PubMed ID: 28778026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Road to Robust and Automated Strain Measurements in Echocardiography by Deep Learning.
    Lovstakken L; Grenne B
    JACC Cardiovasc Imaging; 2024 Jul; 17(7):726-728. PubMed ID: 38613555
    [No Abstract]   [Full Text] [Related]  

  • 60. Basics of Deep Learning: A Radiologist's Guide to Understanding Published Radiology Articles on Deep Learning.
    Do S; Song KD; Chung JW
    Korean J Radiol; 2020 Jan; 21(1):33-41. PubMed ID: 31920027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.