BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31395511)

  • 1. Structure-activity analysis of peptidic Chlamydia HtrA inhibitors.
    Agbowuro AA; Hwang J; Peel E; Mazraani R; Springwald A; Marsh JW; McCaughey L; Gamble AB; Huston WM; Tyndall JDA
    Bioorg Med Chem; 2019 Sep; 27(18):4185-4199. PubMed ID: 31395511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of peptide-based inhibitors targeting the HtrA serine protease in Chlamydia: Design, synthesis and biological evaluation of pyridone-based and N-Capping group-modified analogues.
    Hwang J; Strange N; Phillips MJA; Krause AL; Heywood A; Gamble AB; Huston WM; Tyndall JDA
    Eur J Med Chem; 2021 Nov; 224():113692. PubMed ID: 34265463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protease inhibitor JO146 demonstrates a critical role for CtHtrA for Chlamydia trachomatis reversion from penicillin persistence.
    Ong VA; Marsh JW; Lawrence A; Allan JA; Timms P; Huston WM
    Front Cell Infect Microbiol; 2013; 3():100. PubMed ID: 24392355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and biological evaluation of P2-modified proline analogues targeting the HtrA serine protease in Chlamydia.
    Hwang J; Strange N; Mazraani R; Phillips MJ; Gamble AB; Huston WM; Tyndall JDA
    Eur J Med Chem; 2022 Feb; 230():114064. PubMed ID: 35007862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro susceptibility of recent Chlamydia trachomatis clinical isolates to the CtHtrA inhibitor JO146.
    Ong VA; Lawrence A; Timms P; Vodstrcil LA; Tabrizi SN; Beagley KW; Allan JA; Hocking JS; Huston WM
    Microbes Infect; 2015; 17(11-12):738-44. PubMed ID: 26369711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target.
    Marsh JW; Ong VA; Lott WB; Timms P; Tyndall JD; Huston WM
    Future Microbiol; 2017 Jul; 12():817-829. PubMed ID: 28593794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic activation of Chlamydia trachomatis HTRA is mediated by PDZ1 domain interactions with protease domain loops L3 and LC and beta strand β5.
    Marsh JW; Lott WB; Tyndall JD; Huston WW
    Cell Mol Biol Lett; 2013 Dec; 18(4):522-37. PubMed ID: 24036669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis.
    Zhou Y; Lu X; Huang D; Lu Y; Zhang H; Zhang L; Yu P; Wang F; Wang Y
    Biochem Biophys Res Commun; 2019 Aug; 516(1):157-162. PubMed ID: 31202460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique residues involved in activation of the multitasking protease/chaperone HtrA from Chlamydia trachomatis.
    Huston WM; Tyndall JD; Lott WB; Stansfield SH; Timms P
    PLoS One; 2011; 6(9):e24547. PubMed ID: 21931748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible inhibition of serine proteases by peptide derivatives of (alpha-aminoalkyl)phosphonate diphenyl esters.
    Oleksyszyn J; Powers JC
    Biochemistry; 1991 Jan; 30(2):485-93. PubMed ID: 1988040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production.
    Marsh JW; Wee BA; Tyndall JD; Lott WB; Bastidas RJ; Caldwell HD; Valdivia RH; Kari L; Huston WM
    BMC Microbiol; 2015 Sep; 15():194. PubMed ID: 26424482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C.
    Huston WM; Swedberg JE; Harris JM; Walsh TP; Mathews SA; Timms P
    FEBS Lett; 2007 Jul; 581(18):3382-6. PubMed ID: 17604025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis.
    Gloeckl S; Ong VA; Patel P; Tyndall JD; Timms P; Beagley KW; Allan JA; Armitage CW; Turnbull L; Whitchurch CB; Merdanovic M; Ehrmann M; Powers JC; Oleksyszyn J; Verdoes M; Bogyo M; Huston WM
    Mol Microbiol; 2013 Aug; 89(4):676-89. PubMed ID: 23796320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions.
    Gloeckl S; Tyndall JD; Stansfield SH; Timms P; Huston WM
    J Mol Microbiol Biotechnol; 2012; 22(1):10-6. PubMed ID: 22353774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a conserved role for Chlamydia HtrA in the replication phase of the chlamydial developmental cycle.
    Patel P; De Boer L; Timms P; Huston WM
    Microbes Infect; 2014 Aug; 16(8):690-4. PubMed ID: 25066238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Chloroisocoumarins as Chlamydial Protease Inhibitors and Anti-Chlamydial Agents.
    Phillips MJA; Huston WM; McDonagh AM; Rawling T
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the P6-P3' region of the serpin reactive loop in the formation and breakdown of the inhibitory complex.
    Plotnick MI; Schechter NM; Wang ZM; Liu X; Rubin H
    Biochemistry; 1997 Nov; 36(47):14601-8. PubMed ID: 9398179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA.
    Huston WM; Theodoropoulos C; Mathews SA; Timms P
    BMC Microbiol; 2008 Nov; 8():190. PubMed ID: 18986550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, structure-activity, and molecular modeling studies of potent renin inhibitory peptides having N-terminal Nin-For-Trp (Ftr): angiotensinogen congeners modified by P1-P1' Phe-Phe, Sta, Leu psi[CH(OH)CH2]Val or leu psi[CH2NH]Val substitutions.
    Sawyer TK; Pals DT; Mao B; Staples DJ; de Vaux AE; Maggiora LL; Affholter JA; Kati W; Duchamp D; Hester JB
    J Med Chem; 1988 Jan; 31(1):18-30. PubMed ID: 3275777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid.
    Lehr S; Vier J; Häcker G; Kirschnek S
    Microbes Infect; 2018 May; 20(5):284-292. PubMed ID: 29499390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.