These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31395531)
1. A Modeling Approach for Investigating Opto-Mechanical Relationships in the Human Eye Lens. Wang K; Venetsanos DT; Hoshino M; Uesugi K; Yagi N; Pierscionek BK IEEE Trans Biomed Eng; 2020 Apr; 67(4):999-1006. PubMed ID: 31395531 [TBL] [Abstract][Full Text] [Related]
2. The gradient index lens of the eye: an opto-biological synchrony. Pierscionek BK; Regini JW Prog Retin Eye Res; 2012 Jul; 31(4):332-49. PubMed ID: 22465790 [TBL] [Abstract][Full Text] [Related]
3. The importance of parameter choice in modelling dynamics of the eye lens. Wang K; Venetsanos DT; Wang J; Augousti AT; Pierscionek BK Sci Rep; 2017 Nov; 7(1):16688. PubMed ID: 29192148 [TBL] [Abstract][Full Text] [Related]
4. The eye lens: age-related trends and individual variations in refractive index and shape parameters. Pierscionek B; Bahrami M; Hoshino M; Uesugi K; Regini J; Yagi N Oncotarget; 2015 Oct; 6(31):30532-44. PubMed ID: 26416418 [TBL] [Abstract][Full Text] [Related]
5. The Effect of Lens Shape, Zonular Insertion and Finite Element Model on Simulated Shape Change of the Eye Lens. Ye L; Wang K; Grasa J; Pierscionek BK Ann Biomed Eng; 2024 Aug; 52(8):1982-1990. PubMed ID: 38503945 [TBL] [Abstract][Full Text] [Related]
6. Changes in spherical aberration after lens refilling with a silicone oil. Wong KH; Koopmans SA; Terwee T; Kooijman AC Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171 [TBL] [Abstract][Full Text] [Related]
7. Refractive Index Measurement of the Crystalline Lens in Vivo. He JC Optom Vis Sci; 2023 Dec; 100(12):823-832. PubMed ID: 37890121 [TBL] [Abstract][Full Text] [Related]
8. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082 [TBL] [Abstract][Full Text] [Related]
9. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. Ambekar YS; Singh M; Zhang J; Nair A; Aglyamov SR; Scarcelli G; Larin KV Biomed Opt Express; 2020 Apr; 11(4):2041-2051. PubMed ID: 32341865 [TBL] [Abstract][Full Text] [Related]
10. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress. Wang K; Venetsanos D; Wang J; Pierscionek BK Sci Rep; 2016 Aug; 6():31171. PubMed ID: 27507665 [TBL] [Abstract][Full Text] [Related]
11. Light-scattering study of the normal human eye lens: elastic properties and age dependence. Bailey ST; Twa MD; Gump JC; Venkiteshwar M; Bullimore MA; Sooryakumar R IEEE Trans Biomed Eng; 2010 Dec; 57(12):2910-7. PubMed ID: 20529725 [TBL] [Abstract][Full Text] [Related]
12. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation. Schachar RA Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325 [TBL] [Abstract][Full Text] [Related]
13. Alteration in refractive index profile during accommodation based on mechanical modelling. Bahrami M; Heidari A; Pierscionek BK Biomed Opt Express; 2016 Jan; 7(1):99-110. PubMed ID: 26819821 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the mechanical behaviour and estimation of the elastic properties of porcine zonular fibres. Bocskai ZI; Sándor GL; Kiss Z; Bojtár I; Nagy ZZ J Biomech; 2014 Oct; 47(13):3264-71. PubMed ID: 25242131 [TBL] [Abstract][Full Text] [Related]
15. A focus on the optical properties of the regenerated newt lens. Wassmer S; Beddaoui M; Rajai P; Munger R; Tsilfidis C PLoS One; 2013; 8(8):e70845. PubMed ID: 23990914 [TBL] [Abstract][Full Text] [Related]
16. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling. Jiang MS; Xu XL; Yang T; Zhang XD; Li F Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964 [TBL] [Abstract][Full Text] [Related]
17. In Vivo Brillouin Analysis of the Aging Crystalline Lens. Besner S; Scarcelli G; Pineda R; Yun SH Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5093-5100. PubMed ID: 27699407 [TBL] [Abstract][Full Text] [Related]
19. Elastic properties of human lens zonules as a function of age in presbyopes. Michael R; Mikielewicz M; Gordillo C; Montenegro GA; Pinilla Cortés L; Barraquer RI Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6109-14. PubMed ID: 22850416 [TBL] [Abstract][Full Text] [Related]
20. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age. Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]