These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31395553)

  • 21. Step-Change in Friction Under Electrovibration.
    Ozdamar I; Alipour MR; Delhaye BP; Lefevre P; Basdogan C
    IEEE Trans Haptics; 2020; 13(1):137-143. PubMed ID: 31944995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tactile Masking by Electrovibration.
    Vardar Y; Guclu B; Basdogan C
    IEEE Trans Haptics; 2018; 11(4):623-635. PubMed ID: 30004890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Application of Tactile, Audible, and Ultrasonic Forces to Human Fingertips Using Broadband Electroadhesion.
    Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE
    IEEE Trans Haptics; 2018; 11(2):279-290. PubMed ID: 29911983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-Driven Haptic Texture Modeling and Rendering Based on Deep Spatio-Temporal Networks.
    Joolee JB; Jeon S
    IEEE Trans Haptics; 2022; 15(1):62-67. PubMed ID: 34941523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preference-Driven Texture Modeling Through Interactive Generation and Search.
    Lu S; Zheng M; Fontaine MC; Nikolaidis S; Culbertson H
    IEEE Trans Haptics; 2022; 15(3):508-520. PubMed ID: 35536794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensing and Rendering Method of 2-Dimensional Haptic Texture.
    Saga S; Kurogi J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical and Perceptual Independence of Ultrasonic Vibration and Electrovibration for Friction Modulation.
    Vezzoli E; Messaoud WB; Amberg M; Giraud F; Lemaire-Semail B; Bueno MA
    IEEE Trans Haptics; 2015; 8(2):235-9. PubMed ID: 25955993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesizing the Roughness of Textured Surfaces for an Encountered-Type Haptic Display Using Spatiotemporal Encoding.
    Kim Y; Kim S; Oh U; Kim YJ
    IEEE Trans Haptics; 2021; 14(1):32-43. PubMed ID: 32746377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Multi-User Surface Visuo-Haptic Display Using Electrostatic Friction Modulation and Capacitive-Type Position Sensing.
    Nakamura T; Yamamoto A
    IEEE Trans Haptics; 2016; 9(3):311-22. PubMed ID: 27116751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The physical basis of perceived roughness in virtual sinusoidal textures.
    Unger B; Klatzky R; Hollis R
    IEEE Trans Haptics; 2013; 6(4):496-505. PubMed ID: 24808401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rendering edge enhancement tactile phenomenon by friction variation in dynamic touch.
    Abdolvahab M
    J Biomech; 2011 Jan; 44(1):92-6. PubMed ID: 20832802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Method for Surface Exploration by 6-DOF Encountered-Type Haptic Display Towards Virtual Palpation.
    Diez SP; Poorten EV; Reynaerts D; Yokokohji Y
    IEEE Trans Haptics; 2021; 14(3):577-590. PubMed ID: 33735085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
    Leonardis D; Solazzi M; Bortone I; Frisoli A
    IEEE Trans Haptics; 2017; 10(3):305-316. PubMed ID: 28113306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.
    Kato G; Kuroda Y; Kiyokawa K; Takemura H
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1506-1514. PubMed ID: 29543168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering.
    V Grigorii R; Colgate JE
    IEEE Trans Haptics; 2020; 13(1):253-258. PubMed ID: 32054585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perceptual Substitution Based Haptic Texture Rendering for Narrow-Band Reproduction.
    Alma UA; Rosenkranz R; Altinsoy ME
    IEEE Trans Haptics; 2023; 16(2):204-214. PubMed ID: 37028047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tri-Modal Tactile Display and Its Application Into Tactile Perception of Visualized Surfaces.
    Liu G; Zhang C; Sun X
    IEEE Trans Haptics; 2020; 13(4):733-744. PubMed ID: 32167909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Psychophysical Evaluation of the HapSticks: A Novel Non-Grounded Mechanism for Presenting Tool-Mediated Vertical Forces.
    Kato G; Kuroda Y; Nisky I; Kiyokawa K; Takemura H
    IEEE Trans Haptics; 2017; 10(3):338-349. PubMed ID: 27992349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visually Guided Acquisition of Contact Dynamics and Case Study in Data-Driven Haptic Texture Modeling.
    Abdulali A; Atadjanov IR; Jeon S
    IEEE Trans Haptics; 2020; 13(3):611-627. PubMed ID: 31940552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Evaluation of a Learning-based Model for Real-time Haptic Texture Rendering.
    Heravi N; Culbertson H; Okamura AM; Bohg J
    IEEE Trans Haptics; 2024 Mar; PP():. PubMed ID: 38536688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.