These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31395553)

  • 41. On Frictional Forces between the Finger and a Textured Surface during Active Touch.
    Janko M; Primerano R; Visell Y
    IEEE Trans Haptics; 2016; 9(2):221-32. PubMed ID: 26685262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perception of Ultrasonic Switches Involves Large Discontinuity of the Mechanical Impedance.
    Monnoyer J; Diaz E; Bourdin C; Wiertlewski M
    IEEE Trans Haptics; 2018; 11(4):579-589. PubMed ID: 29994335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface haptic rendering of virtual shapes through change in surface temperature.
    Choi C; Ma Y; Li X; Chatterjee S; Sequeira S; Friesen RF; Felts JR; Hipwell MC
    Sci Robot; 2022 Feb; 7(63):eabl4543. PubMed ID: 35196072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Psychophysical Evaluation of Change in Friction on an Ultrasonically-Actuated Touchscreen.
    Saleem MK; Yilmaz C; Basdogan C
    IEEE Trans Haptics; 2018; 11(4):599-610. PubMed ID: 29994033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display.
    Yamanaka S; Nagatomo T; Hiraki T; Ishizuka H; Miki N
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Waveform on Tactile Perception by Electrovibration Displayed on Touch Screens.
    Vardar Y; Guclu B; Basdogan C
    IEEE Trans Haptics; 2017; 10(4):488-499. PubMed ID: 28534787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
    Wu J; Li N; Liu W; Song G; Zhang J
    IEEE Trans Haptics; 2015; 8(4):410-20. PubMed ID: 26054074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds.
    Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2017; 10(2):265-275. PubMed ID: 28113956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Tactile Computer Mouse for the Display of Surface Material Properties.
    Strese M; Hassen R; Noll A; Steinbach E
    IEEE Trans Haptics; 2019; 12(1):18-33. PubMed ID: 30106740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perceived Hardness through Actual and Virtual Damped Natural Vibrations.
    Higashi K; Okamoto S; Yamada Y
    IEEE Trans Haptics; 2018; 11(4):646-651. PubMed ID: 29993586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarity effect in electrovibration for tactile display.
    Kaczmarek KA; Nammi K; Agarwal AK; Tyler ME; Haase SJ; Beebe DJ
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2047-54. PubMed ID: 17019869
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection and Identification of Pattern Information on an Electrostatic Friction Display.
    Klatzky RL; Nayak A; Stephen I; Dijour D; Tan HZ
    IEEE Trans Haptics; 2019; 12(4):665-670. PubMed ID: 31514155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contact geometry and mechanics predict friction forces during tactile surface exploration.
    Janko M; Wiertlewski M; Visell Y
    Sci Rep; 2018 Mar; 8(1):4868. PubMed ID: 29559728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards Multisensory Perception: Modeling and Rendering Sounds of Tool-Surface Interactions.
    Lu S; Chen Y; Culbertson H
    IEEE Trans Haptics; 2020; 13(1):94-101. PubMed ID: 31944990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibrotactile Compliance Feedback for Tangential Force Interaction.
    Heo S; Lee G
    IEEE Trans Haptics; 2017; 10(3):444-455. PubMed ID: 28113602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.