BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 31395667)

  • 1. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications.
    Ramnarine VR; Alshalalfa M; Mo F; Nabavi N; Erho N; Takhar M; Shukin R; Brahmbhatt S; Gawronski A; Kobelev M; Nouri M; Lin D; Tsai H; Lotan TL; Karnes RJ; Rubin MA; Zoubeidi A; Gleave ME; Sahinalp C; Wyatt AW; Volik SV; Beltran H; Davicioni E; Wang Y; Collins CC
    Gigascience; 2018 Jun; 7(6):. PubMed ID: 29757368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low β₂-adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism.
    Braadland PR; Grytli HH; Ramberg H; Katz B; Kellman R; Gauthier-Landry L; Fazli L; Krobert KA; Wang W; Levy FO; Bjartell A; Berge V; Rennie PS; Mellgren G; Mælandsmo GM; Svindland A; Barbier O; Taskén KA
    Oncotarget; 2016 Jan; 7(2):1878-94. PubMed ID: 26646591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implication of β2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells.
    Guerriero I; Ramberg H; Sagini K; Ramirez-Garrastacho M; Taskén KA; Llorente A
    PLoS One; 2021; 16(6):e0253828. PubMed ID: 34191854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells.
    Moritz T; Venz S; Junker H; Kreuz S; Walther R; Zimmermann U
    Tumour Biol; 2016 Aug; 37(8):10435-46. PubMed ID: 26846108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothened loss is a characteristic of neuroendocrine prostate cancer.
    Wang L; Li H; Li Z; Li M; Tang Q; Wu C; Lu Z
    Prostate; 2021 Jun; 81(9):508-520. PubMed ID: 33955576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting RET Kinase in Neuroendocrine Prostate Cancer.
    VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM
    Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A.
    Natani S; Ramakrishna M; Nallavolu T; Ummanni R
    Prostate; 2023 Jul; 83(10):936-949. PubMed ID: 37069746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer.
    Kwon DH; Zhang L; Quigley DA; Foye A; Chen WS; Wong CK; Feng FY; Bailey A; Huang J; Stuart JM; Friedl V; Weinstein AS; Beer TM; Alumkal JJ; Rettig M; Gleave M; Lara PN; Thomas GV; Li P; Lui A; Small EJ; Aggarwal RR
    Urol Oncol; 2020 Dec; 38(12):931.e9-931.e16. PubMed ID: 32624423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ADRB1 (Adrenoceptor Beta 1) and ADRB2 genes significantly co-express with commonly mutated genes in prostate cancer.
    Lehrer S; Rheinstein PH
    Discov Med; 2020; 30(161):163-171. PubMed ID: 33593484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models.
    Weissenrieder JS; Reilly JE; Neighbors JD; Hohl RJ
    Prostate; 2019 Jan; 79(1):21-30. PubMed ID: 30106164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.
    Seiler D; Zheng J; Liu G; Wang S; Yamashiro J; Reiter RE; Huang J; Zeng G
    Prostate; 2013 Sep; 73(13):1378-90. PubMed ID: 23728788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.
    Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A
    Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity.
    Storck WK; May AM; Westbrook TC; Duan Z; Morrissey C; Yates JA; Alumkal JJ
    Front Endocrinol (Lausanne); 2022; 13():926585. PubMed ID: 35909568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer.
    Jennbacken K; Tesan T; Wang W; Gustavsson H; Damber JE; Welén K
    Endocr Relat Cancer; 2010 Jun; 17(2):469-79. PubMed ID: 20233707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen.
    Fraser JA; Sutton JE; Tazayoni S; Bruce I; Poole AV
    Sci Rep; 2019 Dec; 9(1):19076. PubMed ID: 31836808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor.
    Turpin A; Delliaux C; Parent P; Chevalier H; Escudero-Iriarte C; Bonardi F; Vanpouille N; Flourens A; Querol J; Carnot A; Leroy X; Herranz N; Lanel T; Villers A; Olivier J; Touzet H; de Launoit Y; Tian TV; Duterque-Coquillaud M
    Br J Cancer; 2023 Dec; 129(12):1903-1914. PubMed ID: 37875732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.