These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31395675)

  • 21. Integrating the determinants of suction feeding performance in centrarchid fishes.
    Holzman R; Day SW; Mehta RS; Wainwright PC
    J Exp Biol; 2008 Oct; 211(Pt 20):3296-305. PubMed ID: 18840664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelled three-dimensional suction accuracy predicts prey capture success in three species of centrarchid fishes.
    Kane EA; Higham TE
    J R Soc Interface; 2014 Jun; 11(95):20140223. PubMed ID: 24718455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attack or attacked: the sensory and fluid mechanical constraints of copepods' predator-prey interactions.
    Kiørboe T
    Integr Comp Biol; 2013 Nov; 53(5):821-31. PubMed ID: 23613321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types.
    Olsson KH; Martin CH; Holzman R
    Integr Comp Biol; 2020 Nov; 60(5):1251-1267. PubMed ID: 32333778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How moths escape bats: predicting outcomes of predator-prey interactions.
    Corcoran AJ; Conner WE
    J Exp Biol; 2016 Sep; 219(Pt 17):2704-15. PubMed ID: 27340205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons of aquatic versus terrestrial predatory strikes in the pitviper, Agkistrodon piscivorus.
    Vincent SE; Herrel A; Irschick DJ
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):476-88. PubMed ID: 15880763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of shark prey capture kinematics in response to sensory deprivation.
    Gardiner JM; Atema J; Hueter RE; Motta PJ
    Zoology (Jena); 2017 Feb; 120():42-52. PubMed ID: 27618704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.
    Higham TE; Stewart WJ; Wainwright PC
    Integr Comp Biol; 2015 Jul; 55(1):6-20. PubMed ID: 25980563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prey detection and prey capture in copepod nauplii.
    Bruno E; Andersen Borg CM; Kiørboe T
    PLoS One; 2012; 7(10):e47906. PubMed ID: 23144712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DHA but not EPA, enhances sound induced escape behavior and Mauthner cells activity in Sparus aurata.
    Benítez-Santana T; Atalah E; Betancor MB; Caballero MJ; Hernández-Cruz CM; Izquierdo M
    Physiol Behav; 2014 Jan; 124():65-71. PubMed ID: 24184412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrative modeling approach to elucidate suction-feeding performance.
    Holzman R; Collar DC; Mehta RS; Wainwright PC
    J Exp Biol; 2012 Jan; 215(Pt 1):1-13. PubMed ID: 22162848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation in the feeding prey capture of the ant-lion, Myrmeleon crudelis.
    Lambert EP; Motta PJ; Lowry D
    J Exp Zool A Ecol Genet Physiol; 2011 Dec; 315(10):602-9. PubMed ID: 21953805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.
    Longo SJ; McGee MD; Oufiero CE; Waltzek TB; Wainwright PC
    J Exp Biol; 2016 Jan; 219(Pt 1):119-28. PubMed ID: 26596534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trophic guilds of suction-feeding fishes are distinguished by their characteristic hydrodynamics of swimming and feeding.
    Olsson KH; Gurka R; Holzman R
    Proc Biol Sci; 2022 Jan; 289(1966):20211968. PubMed ID: 35016537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zooplankters' nightmare: The fast and efficient catching basket of larval phantom midges (Diptera: Chaoborus).
    Kruppert S; Deussen L; Weiss LC; Horstmann M; Wolff JO; Kleinteich T; Gorb SN; Tollrian R
    PLoS One; 2019; 14(3):e0214013. PubMed ID: 30901351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Balancing Biomechanical Constraints: Optimal Escape Speeds When There Is a Trade-off between Speed and Maneuverability.
    Clemente CJ; Wilson RS
    Integr Comp Biol; 2015 Dec; 55(6):1142-54. PubMed ID: 26337058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longer development provides first-feeding fish time to escape hydrodynamic constraints.
    Dial TR; Lauder GV
    J Morphol; 2020 Aug; 281(8):956-969. PubMed ID: 32557795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.
    Day SW; Higham TE; Holzman R; Van Wassenbergh S
    Integr Comp Biol; 2015 Jul; 55(1):21-35. PubMed ID: 25980568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The costs and trade-offs of optimal foraging in marine fish larvae.
    Hauss H; Schwabe L; Peck MA
    J Anim Ecol; 2023 May; 92(5):1016-1028. PubMed ID: 36931657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing is everything: coordination of strike kinematics affects the force exerted by suction feeding fish on attached prey.
    Holzman R; Day SW; Wainwright PC
    J Exp Biol; 2007 Oct; 210(Pt 19):3328-36. PubMed ID: 17872986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.