BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31395688)

  • 1. Preclinical Development of the Anti-LAG-3 Antibody REGN3767: Characterization and Activity in Combination with the Anti-PD-1 Antibody Cemiplimab in Human
    Burova E; Hermann A; Dai J; Ullman E; Halasz G; Potocky T; Hong S; Liu M; Allbritton O; Woodruff A; Pei J; Rafique A; Poueymirou W; Martin J; MacDonald D; Olson WC; Murphy A; Ioffe E; Thurston G; Mohrs M
    Mol Cancer Ther; 2019 Nov; 18(11):2051-2062. PubMed ID: 31395688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Anti-PD-1 Antibody REGN2810 and Its Antitumor Activity in Human
    Burova E; Hermann A; Waite J; Potocky T; Lai V; Hong S; Liu M; Allbritton O; Woodruff A; Wu Q; D'Orvilliers A; Garnova E; Rafique A; Poueymirou W; Martin J; Huang T; Skokos D; Kantrowitz J; Popke J; Mohrs M; MacDonald D; Ioffe E; Olson W; Lowy I; Murphy A; Thurston G
    Mol Cancer Ther; 2017 May; 16(5):861-870. PubMed ID: 28265006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TSR-033, a Novel Therapeutic Antibody Targeting LAG-3, Enhances T-Cell Function and the Activity of PD-1 Blockade
    Ghosh S; Sharma G; Travers J; Kumar S; Choi J; Jun HT; Kehry M; Ramaswamy S; Jenkins D
    Mol Cancer Ther; 2019 Mar; 18(3):632-641. PubMed ID: 30587557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity.
    Kraman M; Faroudi M; Allen NL; Kmiecik K; Gliddon D; Seal C; Koers A; Wydro MM; Batey S; Winnewisser J; Young L; Tuna M; Doody J; Morrow M; Brewis N
    Clin Cancer Res; 2020 Jul; 26(13):3333-3344. PubMed ID: 32299814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical and Immunological Characterization and
    Hutchins B; Starling GC; McCoy MA; Herzyk D; Poulet FM; Dulos J; Liu L; Kang SP; Fayadat-Dilman L; Hsieh M; Andrews CL; Ayanoglu G; Cullen C; Malefyt RW; Kastelein RA; Saux SL; Lee J; Li S; Malashock D; Sadekova S; Soder G; van Eenennaam H; Willingham A; Yu Y; Streuli M; Carven GJ; van Elsas A
    Mol Cancer Ther; 2020 Jun; 19(6):1298-1307. PubMed ID: 32229606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation.
    Sung E; Ko M; Won JY; Jo Y; Park E; Kim H; Choi E; Jung UJ; Jeon J; Kim Y; Ahn H; Choi DS; Choi S; Hong Y; Park H; Lee H; Son YG; Park K; Won J; Oh SJ; Lee S; Kim KP; Yoo C; Song HK; Jin HS; Jung J; Park Y
    Mol Ther; 2022 Aug; 30(8):2800-2816. PubMed ID: 35526096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models.
    Case K; Tran L; Yang M; Zheng H; Kuhtreiber WM; Faustman DL
    J Leukoc Biol; 2020 Jun; 107(6):981-991. PubMed ID: 32449229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of LAG-3 in PD-L1-Deficient Mice Enhances Clearance of Blood Stage Malaria Independent of Humoral Responses.
    Furtado R; Chorro L; Zimmerman N; Guillen E; Spaulding E; Chin SS; Daily JP; Lauvau G
    Front Immunol; 2020; 11():576743. PubMed ID: 33519801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CS1003, a novel human and mouse cross-reactive PD-1 monoclonal antibody for cancer therapy.
    Li F; Li J; Yin K; Zhang J; Li ZH; Lu L; Bao YW; Qin Z; Zheng Y; Yang BT; Li J; Wang X
    Acta Pharmacol Sin; 2021 Jan; 42(1):142-148. PubMed ID: 32467569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse.
    Ashizawa T; Iizuka A; Nonomura C; Kondou R; Maeda C; Miyata H; Sugino T; Mitsuya K; Hayashi N; Nakasu Y; Maruyama K; Yamaguchi K; Katano I; Ito M; Akiyama Y
    Clin Cancer Res; 2017 Jan; 23(1):149-158. PubMed ID: 27458246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts.
    Capasso A; Lang J; Pitts TM; Jordan KR; Lieu CH; Davis SL; Diamond JR; Kopetz S; Barbee J; Peterson J; Freed BM; Yacob BW; Bagby SM; Messersmith WA; Slansky JE; Pelanda R; Eckhardt SG
    J Immunother Cancer; 2019 Feb; 7(1):37. PubMed ID: 30736857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical characterization of dostarlimab, a therapeutic anti-PD-1 antibody with potent activity to enhance immune function in in vitro cellular assays and in vivo animal models.
    Kumar S; Ghosh S; Sharma G; Wang Z; Kehry MR; Marino MH; Neben TY; Lu S; Luo S; Roberts S; Ramaswamy S; Danaee H; Jenkins D
    MAbs; 2021; 13(1):1954136. PubMed ID: 34313545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy.
    Yu X; Huang X; Chen X; Liu J; Wu C; Pu Q; Wang Y; Kang X; Zhou L
    MAbs; 2019; 11(6):1139-1148. PubMed ID: 31242068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of MEDI4736, an Antagonistic Anti-PD-L1 Monoclonal Antibody.
    Stewart R; Morrow M; Hammond SA; Mulgrew K; Marcus D; Poon E; Watkins A; Mullins S; Chodorge M; Andrews J; Bannister D; Dick E; Crawford N; Parmentier J; Alimzhanov M; Babcook JS; Foltz IN; Buchanan A; Bedian V; Wilkinson RW; McCourt M
    Cancer Immunol Res; 2015 Sep; 3(9):1052-62. PubMed ID: 25943534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of two novel blocking antibodies, anti-PD-1 antibody ezabenlimab (BI 754091) and anti-LAG-3 antibody BI 754111, leads to increased immune cell responses.
    Zettl M; Wurm M; Schaaf O; Mostböck S; Tirapu I; Apfler I; Lorenz IC; Frego L; Kenny C; Thibodeau M; Oquendo Cifuentes E; Reschke M; Moll J; Kraut N; Vogt A; Sedgwick JD; Waizenegger IC
    Oncoimmunology; 2022; 11(1):2080328. PubMed ID: 35756842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tislelizumab uniquely binds to the CC' loop of PD-1 with slow-dissociated rate and complete PD-L1 blockage.
    Hong Y; Feng Y; Sun H; Zhang B; Wu H; Zhu Q; Li Y; Zhang T; Zhang Y; Cui X; Li Z; Song X; Li K; Liu M; Liu Y
    FEBS Open Bio; 2021 Mar; 11(3):782-792. PubMed ID: 33527708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors.
    Mishra AK; Kadoishi T; Wang X; Driver E; Chen Z; Wang XJ; Wang JH
    Oncotarget; 2016 Dec; 7(49):81341-81356. PubMed ID: 27835902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting CD38 and PD-1 with isatuximab plus cemiplimab in patients with advanced solid malignancies: results from a phase I/II open-label, multicenter study.
    Zucali PA; Lin CC; Carthon BC; Bauer TM; Tucci M; Italiano A; Iacovelli R; Su WC; Massard C; Saleh M; Daniele G; Greystoke A; Gutierrez M; Pant S; Shen YC; Perrino M; Meng R; Abbadessa G; Lee H; Dong Y; Chiron M; Wang R; Loumagne L; Lépine L; de Bono J
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35058326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy.
    Xiao Z; Su Z; Han S; Huang J; Lin L; Shuai X
    Sci Adv; 2020 Feb; 6(6):eaay7785. PubMed ID: 32076650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.