These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31395898)
1. A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage. Wan YC; Chen Y; Cui ZX; Ding H; Gao SF; Han Z; Gao JK Sci Rep; 2019 Aug; 9(1):11535. PubMed ID: 31395898 [TBL] [Abstract][Full Text] [Related]
2. Cost-Effective Biochar Produced from Agricultural Residues and Its Application for Preparation of High Performance Form-Stable Phase Change Material via Simple Method. Chen Y; Cui Z; Ding H; Wan Y; Tang Z; Gao J Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301253 [TBL] [Abstract][Full Text] [Related]
3. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955 [TBL] [Abstract][Full Text] [Related]
4. Study of Phase-Transition Characteristics of New Composite Phase Change Materials of Capric Acid-Palmitic Acid/Expanded Graphite. Fei H; Du W; He Q; Gu Q; Wang L ACS Omega; 2020 Oct; 5(42):27522-27529. PubMed ID: 33134715 [TBL] [Abstract][Full Text] [Related]
5. Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S Environ Res; 2019 May; 172():637-648. PubMed ID: 30878735 [TBL] [Abstract][Full Text] [Related]
6. Palmitic acid/expanded graphite/CuS composite phase change materials toward efficient thermal storage and photothermal conversion. Huo YJ; Yan T; Li ZH; Li SY; Pan WG Dalton Trans; 2023 Jul; 52(28):9797-9808. PubMed ID: 37401338 [TBL] [Abstract][Full Text] [Related]
7. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304 [TBL] [Abstract][Full Text] [Related]
8. Structural characteristics and thermal performances of lauric-myristic-palmitic acid introduced into modified water hyacinth porous biochar for thermal energy storage. Zhou J; Fei H; He Q; Li P; Pan Y; Liang X Sci Total Environ; 2023 Jul; 882():163670. PubMed ID: 37098398 [TBL] [Abstract][Full Text] [Related]
9. Expanded vermiculite supported capric-palmitic acid composites for thermal energy storage. Bai R; Liu S; Han J; Wang M; Gao W; Wu D; Zhou M RSC Adv; 2023 Jun; 13(26):17516-17525. PubMed ID: 37304813 [TBL] [Abstract][Full Text] [Related]
10. Effect of Boron Nitride on the Heat Transfer and Heat Storage of Poly(ethylene glycol)/Expanded Vermiculite Composite Phase-Change Materials. Wang H; Lei J; Wu T; Wu D; Liu H; Deng Y; Wu F ACS Omega; 2022 Jan; 7(2):2438-2443. PubMed ID: 35071931 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Thermal Performance of Composite Phase Change Materials Based on Hybrid Graphene Aerogels for Thermal Energy Storage. Shang Y; Zhang D; An M; Li Z Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955314 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous silica nanoparticles with wrinkled structure as the matrix of myristic acid for the preparation of a promising new shape-stabilized phase change material Chen D; Chen Y; Guo X; Tao W; Wang J; Gao S; Gao J RSC Adv; 2018 Oct; 8(60):34224-34231. PubMed ID: 35548616 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of innovative cement mortar incorporating fatty acid/expanded graphite composite phase change material for thermal energy storage. Zhou D; Xiao S; Liu Y Sci Rep; 2024 Jul; 14(1):16523. PubMed ID: 39019991 [TBL] [Abstract][Full Text] [Related]
15. Study of Capric-Palmitic Acid/Clay Minerals as Form-Stable Composite Phase-Change Materials for Thermal Energy Storage. Liu S; Xin S; Jiang S ACS Omega; 2021 Sep; 6(38):24650-24662. PubMed ID: 34604647 [TBL] [Abstract][Full Text] [Related]
16. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties. Tahan Latibari S; Mehrali M; Mehrali M; Mahlia TM; Metselaar HS ScientificWorldJournal; 2014; 2014():379582. PubMed ID: 25054179 [TBL] [Abstract][Full Text] [Related]
17. A Facile and Simple Method for Preparation of Novel High-Efficient Form-Stable Phase Change Materials Using Biomimetic-Synthetic Polydopamine Microspheres as a Matrix for Thermal Energy Storage. Gao J; Tang X; Chen Z; Ding H; Liu Y; Li X; Chen Y Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540176 [TBL] [Abstract][Full Text] [Related]
18. Cu Nanoparticles Improved Thermal Property of Form-Stable Phase Change Materials Made with Carbon Nanofibers and LA-MA-SA Eutectic Mixture. Song X; Cai Y; Huang C; Gu Y; Zhang J; Qiao H; Wei Q J Nanosci Nanotechnol; 2018 Apr; 18(4):2723-2731. PubMed ID: 29442949 [TBL] [Abstract][Full Text] [Related]
19. Functional Unit Construction for Heat Storage by Using Biomass-Based Composite. Su J; Weng M; Lu X; Xu W; Lyu S; Liu Y; Min Y Front Chem; 2022; 10():835455. PubMed ID: 35198540 [TBL] [Abstract][Full Text] [Related]
20. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity. Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]