These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31395990)
1. Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. Rajib A; Evenson GR; Golden HE; Lane CR J Hydrol (Amst); 2018; 567():668-683. PubMed ID: 31395990 [TBL] [Abstract][Full Text] [Related]
2. The Application of SWAT Model and Remotely Sensed Products to Characterize the Dynamic of Streamflow and Snow in a Mountainous Watershed in the High Atlas. Taia S; Erraioui L; Arjdal Y; Chao J; El Mansouri B; Scozzari A Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772286 [TBL] [Abstract][Full Text] [Related]
3. Spatial calibration and uncertainty reduction of the SWAT model using multiple remotely sensed data. Lee S; Kim D; McCarty GW; Anderson M; Gao F; Lei F; Moglen GE; Zhang X; Yen H; Qi J; Crow W; Yeo IY; Sun L Heliyon; 2024 May; 10(10):e30923. PubMed ID: 38778950 [TBL] [Abstract][Full Text] [Related]
4. Watershed Modeling with Remotely Sensed Big Data: MODIS Leaf Area Index Improves Hydrology and Water Quality Predictions. Rajib A; Kim IL; Golden HE; Lane CR; Kumar SV; Yu Z; Jeyalakshmi S Remote Sens (Basel); 2020 Jul; 12(13):2148. PubMed ID: 33425378 [TBL] [Abstract][Full Text] [Related]
5. Improved agricultural Water management in data-scarce semi-arid watersheds: Value of integrating remotely sensed leaf area index in hydrological modeling. Paul M; Rajib A; Negahban-Azar M; Shirmohammadi A; Srivastava P Sci Total Environ; 2021 Oct; 791():148177. PubMed ID: 34118663 [TBL] [Abstract][Full Text] [Related]
6. Improved forest dynamics leads to better hydrological predictions in watershed modeling. Haas H; Kalin L; Srivastava P Sci Total Environ; 2022 May; 821():153180. PubMed ID: 35051464 [TBL] [Abstract][Full Text] [Related]
7. Ecohydrologic model with satellite-based data for predicting streamflow in ungauged basins. Choi J; Kim U; Kim S Sci Total Environ; 2023 Dec; 903():166617. PubMed ID: 37647955 [TBL] [Abstract][Full Text] [Related]
8. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430 [TBL] [Abstract][Full Text] [Related]
9. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S. Yuan L; Forshay KJ PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687 [TBL] [Abstract][Full Text] [Related]
10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
11. Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia. Dile YT; Ayana EK; Worqlul AW; Xie H; Srinivasan R; Lefore N; You L; Clarke N Sci Total Environ; 2020 Nov; 743():140702. PubMed ID: 32758830 [TBL] [Abstract][Full Text] [Related]
12. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium. Yimer EA; Riakhi FE; Bailey RT; Nossent J; van Griensven A Sci Total Environ; 2023 Aug; 885():163903. PubMed ID: 37146800 [TBL] [Abstract][Full Text] [Related]
13. Hydrologic cost-effectiveness ratio favors switchgrass production on marginal croplands over existing grasslands. Yimam YT; Ochsner TE; Fox GA PLoS One; 2017; 12(8):e0181924. PubMed ID: 28792541 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the effects of DEM and soil data resolution on streamflow and sediment yield simulations in the Upper Blue Nile basin. Dile YT; Bayabil HK; Ayana EK; Worqlul AW; Srinivasan R; Lefore N; Berihun ML Environ Monit Assess; 2023 Dec; 196(1):71. PubMed ID: 38127159 [TBL] [Abstract][Full Text] [Related]
15. Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2. Yeo IY; Lee S; Lang MW; Yetemen O; McCarty GW; Sadeghi AM; Evenson G Sci Total Environ; 2019 Feb; 653():1557-1570. PubMed ID: 30527888 [TBL] [Abstract][Full Text] [Related]
16. A watershed-scale model for depressional wetland-rich landscapes. Evenson GR; Jones CN; McLaughlin DL; Golden HE; Lane CR; DeVries B; Alexander LC; Lang MW; McCarty GW; Sharifi A J Hydrol X; 2018 Dec; 1():. PubMed ID: 31448367 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Anh NV; Fukuda S; Hiramatsu K; Harada M Water Environ Res; 2015 Aug; 87(8):735-50. PubMed ID: 26237690 [TBL] [Abstract][Full Text] [Related]
18. How suitable are satellite rainfall estimates in simulating high flows and actual evapotranspiration in MelkaKunitre catchment, Upper Awash Basin, Ethiopia? Mekonnen K; Melesse AM; Woldesenbet TA Sci Total Environ; 2022 Feb; 806(Pt 1):150443. PubMed ID: 34844310 [TBL] [Abstract][Full Text] [Related]
19. Phenology-adjusted dynamic curve number for improved hydrologic modeling. Muche ME; Hutchinson SL; Hutchinson JMS; Johnston JM J Environ Manage; 2019 Apr; 235():403-413. PubMed ID: 30708277 [TBL] [Abstract][Full Text] [Related]
20. Calibration using R-programming and parallel processing at the HUC12 subbasin scale in the Mid-Atlantic region: Development of national SWAT hydrologic calibration. Bawa A; Mendoza K; Srinivasan R; Parmar R; Smith D; Wolfe K; Johnston JM; Corona J Environ Model Softw; 2024 May; 176():1-14. PubMed ID: 38994237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]