BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31396011)

  • 1. A framework for uncertainty and risk analysis in Total Maximum Daily Load applications.
    Camacho RA; Martin JL; Wool T; Singh VP
    Environ Model Softw; 2018 Mar; 101():218-235. PubMed ID: 31396011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.
    Liang S; Jia H; Xu C; Xu T; Melching C
    Sci Total Environ; 2016 Aug; 560-561():44-54. PubMed ID: 27093122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability-Based Water Quality Assessment with Load Resistance Factor Design: Application to TMDL.
    Riasi MS; Teklitz A; Shuster W; Nietch C; Yeghiazarian L
    J Hydrol Eng; 2018; 23(12):1943-5584. PubMed ID: 31595142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the TMDL process using watershed risk assessment principles.
    Serveiss VB; Butcher JB; Diamond J; Jones KC
    Environ Manage; 2005 Jul; 36(1):143-51. PubMed ID: 16132454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving water quality assessments through a hierarchical Bayesian analysis of variability.
    Gronewold AD; Borsuk ME
    Environ Sci Technol; 2010 Oct; 44(20):7858-64. PubMed ID: 20853866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the frequency of water quality standard violations: a probabilistic approach for TMDL development.
    Borsuk ME; Stow CA; Reckhow KH
    Environ Sci Technol; 2002 May; 36(10):2109-15. PubMed ID: 12038818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian approach to estimating margin of safety for total maximum daily load development.
    Patil A; Deng ZQ
    J Environ Manage; 2011 Mar; 92(3):910-8. PubMed ID: 21130557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic total maximum daily load for watershed-based pollutant trading.
    Zaidi AZ; deMonsabert SM
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6308-24. PubMed ID: 25487554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment.
    Chen D; Dahlgren RA; Shen Y; Lu J
    Sci Total Environ; 2012 Jul; 430():59-67. PubMed ID: 22634550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk-based decision making to evaluate pollutant reduction scenarios.
    Ahmadisharaf E; Benham BL
    Sci Total Environ; 2020 Feb; 702():135022. PubMed ID: 31731127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs.
    Havens KE; Schelske CL
    Environ Pollut; 2001; 113(1):1-9. PubMed ID: 11351756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty quantification in reconstruction of sparse water quality time series: Implications for watershed health and risk-based TMDL assessment.
    Mallya G; Gupta A; Hantush MM; Govindaraju RS
    Environ Model Softw; 2020 Sep; 131():. PubMed ID: 33897271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking trading ratio with TMDL (total maximum daily load) allocation matrix and uncertainty analysis.
    Zhang HX
    Water Sci Technol; 2008; 58(1):103-8. PubMed ID: 18653943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A procedure for setting environmentally safe total maximum daily loads (TMDLs) for selenium.
    Lemly AD
    Ecotoxicol Environ Saf; 2002 Jun; 52(2):123-7. PubMed ID: 12061828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities for Reducing Total Maximum Daily Load (TMDL) compliance costs: lessons from the Chesapeake Bay.
    Wainger LA
    Environ Sci Technol; 2012 Sep; 46(17):9256-65. PubMed ID: 22891870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of water quality management with a systematic qualitative uncertainty analysis.
    Chen CF; Ma HW; Reckhow KH
    Sci Total Environ; 2007 Mar; 374(1):13-25. PubMed ID: 17258295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.
    Liao H; Krometis LA; Kline K
    Sci Total Environ; 2016 May; 551-552():668-75. PubMed ID: 26897410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of bacteria and benthic total maximum daily loads: a case study, Linville Creek, Virginia.
    Benham BL; Brannan KM; Yagow G; Zeckoski RW; Dillaha TA; Mostaghimi S; Wynn JW
    J Environ Qual; 2005; 34(5):1860-72. PubMed ID: 16151238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana.
    Yang G; Best EP; Whiteaker T; Teklitz A; Yeghiazarian L
    J Environ Manage; 2014 Mar; 135():1-10. PubMed ID: 24486566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation.
    Shen J; Zhao Y
    Water Res; 2010 Jan; 44(1):77-84. PubMed ID: 19781737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.