These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31396069)

  • 1. Asynchronous Branch-Parallel Simulation of Detailed Neuron Models.
    Magalhães BRC; Sterling T; Hines M; Schürmann F
    Front Neuroinform; 2019; 13():54. PubMed ID: 31396069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors.
    Hines ML; Eichner H; Schürmann F
    J Comput Neurosci; 2008 Aug; 25(1):203-10. PubMed ID: 18214662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs.
    Ben-Shalom R; Ladd A; Artherya NS; Cross C; Kim KG; Sanghevi H; Korngreen A; Bouchard KE; Bender KJ
    J Neurosci Methods; 2022 Jan; 366():109400. PubMed ID: 34728257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully implicit parallel simulation of single neurons.
    Hines ML; Markram H; Schürmann F
    J Comput Neurosci; 2008 Dec; 25(3):439-48. PubMed ID: 18379867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The OCR-Vx experience: lessons learned from designing and implementing a task-based runtime system.
    Dokulil J; Benkner S
    J Supercomput; 2022; 78(10):12344-12379. PubMed ID: 35698470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and computation in mixed networks containing neurons that accelerate towards spiking.
    Manz P; Goedeke S; Memmesheimer RM
    Phys Rev E; 2019 Oct; 100(4-1):042404. PubMed ID: 31770941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallelisation of equation-based simulation programs on heterogeneous computing systems.
    Nikolić DD
    PeerJ Comput Sci; 2018; 4():e160. PubMed ID: 33816813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections.
    Pastorelli E; Capone C; Simula F; Sanchez-Vives MV; Del Giudice P; Mattia M; Paolucci PS
    Front Syst Neurosci; 2019; 13():33. PubMed ID: 31396058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Neuronal Network Models in Massively Parallel Environments.
    Ippen T; Eppler JM; Plesser HE; Diesmann M
    Front Neuroinform; 2017; 11():30. PubMed ID: 28559808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale.
    Chen W; Carel T; Awile O; Cantarutti N; Castiglioni G; Cattabiani A; Del Marmol B; Hepburn I; King JG; Kotsalos C; Kumbhar P; Lallouette J; Melchior S; Schürmann F; De Schutter E
    Front Neuroinform; 2022; 16():883742. PubMed ID: 36387588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond LIF Neurons on Neuromorphic Hardware.
    Ward M; Rhodes O
    Front Neurosci; 2022; 16():881598. PubMed ID: 35864984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CoreNEURON : An Optimized Compute Engine for the NEURON Simulator.
    Kumbhar P; Hines M; Fouriaux J; Ovcharenko A; King J; Delalondre F; Schürmann F
    Front Neuroinform; 2019; 13():63. PubMed ID: 31616273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic parallelism for synaptic updating in GPU-accelerated spiking neural network simulations.
    Kasap B; van Opstal AJ
    Neurocomputing (Amst); 2018 May; 302():55-65. PubMed ID: 30245550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiking network simulation code for petascale computers.
    Kunkel S; Schmidt M; Eppler JM; Plesser HE; Masumoto G; Igarashi J; Ishii S; Fukai T; Morrison A; Diesmann M; Helias M
    Front Neuroinform; 2014; 8():78. PubMed ID: 25346682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits to high-speed simulations of spiking neural networks using general-purpose computers.
    Zenke F; Gerstner W
    Front Neuroinform; 2014; 8():76. PubMed ID: 25309418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
    Fu Z; Kirby RM; Whitaker RT
    SIAM J Sci Comput; 2013; 35(5):c473-c494. PubMed ID: 25221418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0.
    Hagen E; Næss S; Ness TV; Einevoll GT
    Front Neuroinform; 2018; 12():92. PubMed ID: 30618697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
    Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S
    Front Neuroinform; 2018; 12():2. PubMed ID: 29503613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.