BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31396193)

  • 1. Evaluation of the Antimicrobial Peptide, RP557, for the Broad-Spectrum Treatment of Wound Pathogens and Biofilm.
    Woodburn KW; Jaynes JM; Clemens LE
    Front Microbiol; 2019; 10():1688. PubMed ID: 31396193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of synthetic peptide RP557 and its origin, LL-37, on carbapenem-resistant
    Song YQ; Kyung SM; Kim S; Kim G; Lee SY; Yoo HS
    Microbiol Spectr; 2023 Aug; 11(5):e0043023. PubMed ID: 37555659
    [No Abstract]   [Full Text] [Related]  

  • 3. A Designed Host Defense Peptide for the Topical Treatment of MRSA-Infected Diabetic Wounds.
    Vargas A; Garcia G; Rivara K; Woodburn K; Clemens LE; Simon SI
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed Antimicrobial Peptides for Topical Treatment of Antibiotic Resistant Acne Vulgaris.
    Woodburn KW; Jaynes J; Clemens LE
    Antibiotics (Basel); 2020 Jan; 9(1):. PubMed ID: 31940992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed Antimicrobial Peptides Against Trauma-Related Cutaneous Invasive Fungal Wound Infections.
    Woodburn KW; Jaynes JM; Clemens LE
    J Fungi (Basel); 2020 Sep; 6(3):. PubMed ID: 32971819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation.
    Li B; Zhang Y; Guo Q; He S; Fan J; Xu L; Zhang Z; Wu W; Chu H
    Sci Total Environ; 2022 Feb; 807(Pt 3):151855. PubMed ID: 34813807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds.
    Pfalzgraff A; Brandenburg K; Weindl G
    Front Pharmacol; 2018; 9():281. PubMed ID: 29643807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PaP1, a Broad-Spectrum Lysin-Derived Cationic Peptide to Treat Polymicrobial Skin Infections.
    Heselpoth RD; Euler CW; Fischetti VA
    Front Microbiol; 2022; 13():817228. PubMed ID: 35369520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates.
    Liu CB; Shan B; Bai HM; Tang J; Yan LZ; Ma YB
    Dongwuxue Yanjiu; 2015 Jan; 36(1):41-7. PubMed ID: 25730460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
    Zhang C; Gong YL; Luo XQ; Liu MX; Peng YZ
    Zhonghua Shao Shang Za Zhi; 2018 Nov; 34(11):802-808. PubMed ID: 30481922
    [No Abstract]   [Full Text] [Related]  

  • 11. [Analysis of distribution and drug resistance of pathogens isolated from 159 patients with catheter-related bloodstream infection in burn intensive care unit].
    Luo XQ; Gong YL; Zhang C; Liu MX; Shi YL; Peng YZ; Li N
    Zhonghua Shao Shang Za Zhi; 2020 Jan; 36(1):24-31. PubMed ID: 32023714
    [No Abstract]   [Full Text] [Related]  

  • 12. Collagen tethering of synthetic human antimicrobial peptides cathelicidin LL37 and its effects on antimicrobial activity and cytotoxicity.
    Lozeau LD; Grosha J; Kole D; Prifti F; Dominko T; Camesano TA; Rolle MW
    Acta Biomater; 2017 Apr; 52():9-20. PubMed ID: 28017866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of distribution and drug resistance of pathogens isolated from 541 hospitalized children with burn infection].
    Dai JX; Li L; Xu L; Chen ZH; Li XY; Liu M; Wen YQ; Chen XD
    Zhonghua Shao Shang Za Zhi; 2016 Nov; 32(11):670-675. PubMed ID: 27894388
    [No Abstract]   [Full Text] [Related]  

  • 14. Designed Antimicrobial Peptides for Recurrent Vulvovaginal Candidiasis Treatment.
    Woodburn KW; Clemens LE; Jaynes J; Joubert LM; Botha A; Nazik H; Stevens DA
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31451496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides.
    Dosler S; Karaaslan E
    Peptides; 2014 Dec; 62():32-7. PubMed ID: 25285879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of methicillin resistant
    Upreti N; Rayamajhee B; Sherchan SP; Choudhari MK; Banjara MR
    Antimicrob Resist Infect Control; 2018; 7():121. PubMed ID: 30338059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiotic resistance and biofilm production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal.
    Belbase A; Pant ND; Nepal K; Neupane B; Baidhya R; Baidya R; Lekhak B
    Ann Clin Microbiol Antimicrob; 2017 Mar; 16(1):15. PubMed ID: 28330484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens.
    Schwab U; Gilligan P; Jaynes J; Henke D
    Antimicrob Agents Chemother; 1999 Jun; 43(6):1435-40. PubMed ID: 10348766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection.
    Jiang S; Deslouches B; Chen C; Di ME; Di YP
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.
    Chung PY; Khanum R
    J Microbiol Immunol Infect; 2017 Aug; 50(4):405-410. PubMed ID: 28690026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.