These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31396259)

  • 1. Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks.
    Wu N; Huang J; Zhang XF; Ou-Yang L; He S; Zhu Z; Xie W
    Front Genet; 2019; 10():623. PubMed ID: 31396259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored graphical lasso for data integration in gene network reconstruction.
    Lingjærde C; Lien TG; Borgan Ø; Bergholtz H; Glad IK
    BMC Bioinformatics; 2021 Oct; 22(1):498. PubMed ID: 34654363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks.
    Seal S; Li Q; Basner EB; Saba LM; Kechris K
    PLoS Comput Biol; 2023 Jan; 19(1):e1010758. PubMed ID: 36607897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The joint graphical lasso for inverse covariance estimation across multiple classes.
    Danaher P; Wang P; Witten DM
    J R Stat Soc Series B Stat Methodol; 2014 Mar; 76(2):373-397. PubMed ID: 24817823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Learning of Multiple Differential Networks With Latent Variables.
    Ou-Yang L; Zhang XF; Zhao XM; Wang DD; Wang FL; Lei B; Yan H
    IEEE Trans Cybern; 2019 Sep; 49(9):3494-3506. PubMed ID: 29994625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning.
    Zhuang Y; Xing F; Ghosh D; Banaei-Kashani F; Bowler RP; Kechris K
    Front Genet; 2021; 12():760299. PubMed ID: 35154240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NJGCG: A node-based joint Gaussian copula graphical model for gene networks inference across multiple states.
    Huang Y; Huang S; Zhang XF; Ou-Yang L; Liu C
    Comput Struct Biotechnol J; 2024 Dec; 23():3199-3210. PubMed ID: 39263209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Node-Based Learning of Multiple Gaussian Graphical Models.
    Mohan K; London P; Fazel M; Witten D; Lee SI
    J Mach Learn Res; 2014 Jan; 15(1):445-488. PubMed ID: 25309137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway Graphical Lasso.
    Grechkin M; Fazel M; Witten D; Lee SI
    Proc AAAI Conf Artif Intell; 2015 Jan; 2015():2617-2623. PubMed ID: 26167394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Graphical Models With Hubs.
    Tan KM; London P; Mohan K; Lee SI; Fazel M; Witten D
    J Mach Learn Res; 2014 Oct; 15():3297-3331. PubMed ID: 25620891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Network Analysis via Weighted Fused Conditional Gaussian Graphical Model.
    Ou-Yang L; Zhang XF; Hu X; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2162-2169. PubMed ID: 31247559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structured Learning of Gaussian Graphical Models.
    Mohan K; Chung MJ; Han S; Witten D; Lee SI; Fazel M
    Adv Neural Inf Process Syst; 2012; 2012():629-637. PubMed ID: 25360066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.
    Xu T; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1632-1642. PubMed ID: 31647444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Network Reconstruction by Integration of Prior Biological Knowledge.
    Li Y; Jackson SA
    G3 (Bethesda); 2015 Mar; 5(6):1075-9. PubMed ID: 25823587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Joint Graphical Model for Inferring Gene Networks Across Multiple Subpopulations and Data Types.
    Zhang XF; Ou-Yang L; Yan T; Hu XT; Yan H
    IEEE Trans Cybern; 2021 Feb; 51(2):1043-1055. PubMed ID: 31794418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions.
    Deng W; Zhang K; Liu S; Zhao PX; Xu S; Wei H
    Bioinformatics; 2018 Oct; 34(20):3470-3478. PubMed ID: 29718177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.