These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 31396270)
1. Driving Fatigue Detection from EEG Using a Modified PCANet Method. Ma Y; Chen B; Li R; Wang C; Wang J; She Q; Luo Z; Zhang Y Comput Intell Neurosci; 2019; 2019():4721863. PubMed ID: 31396270 [TBL] [Abstract][Full Text] [Related]
2. Classifying Driving Fatigue by Using EEG Signals. Zeng C; Mu Z; Wang Q Comput Intell Neurosci; 2022; 2022():1885677. PubMed ID: 35371255 [TBL] [Abstract][Full Text] [Related]
3. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
4. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Chen J; Wang H; Wang Q; Hua C Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455 [TBL] [Abstract][Full Text] [Related]
5. A hybrid EEG classification model using layered cascade deep learning architecture. Liu C; Chen W; Li M Med Biol Eng Comput; 2024 Jul; 62(7):2213-2229. PubMed ID: 38507121 [TBL] [Abstract][Full Text] [Related]
6. Epileptic seizure detection in EEG signal with GModPCA and support vector machine. Jaiswal AK; Banka H Biomed Mater Eng; 2017; 28(2):141-157. PubMed ID: 28372267 [TBL] [Abstract][Full Text] [Related]
7. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification. Zeng H; Yang C; Zhang H; Wu Z; Zhang J; Dai G; Babiloni F; Kong W Comput Intell Neurosci; 2019; 2019():3761203. PubMed ID: 31611912 [TBL] [Abstract][Full Text] [Related]
8. Study on the Effect of Man-Machine Response Mode to Relieve Driving Fatigue Based on EEG and EOG. Wang F; Xu Q; Fu R Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717422 [TBL] [Abstract][Full Text] [Related]
9. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state. Shangguan P; Qiu T; Liu T; Zou S; Liu Z; Zhang S Physiol Meas; 2021 Jan; 41(12):125004. PubMed ID: 33126235 [TBL] [Abstract][Full Text] [Related]
10. CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection. Gao D; Li P; Wang M; Liang Y; Liu S; Zhou J; Wang L; Zhang Y IEEE J Biomed Health Inform; 2024 May; 28(5):2558-2568. PubMed ID: 37022236 [TBL] [Abstract][Full Text] [Related]
11. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network. Wang F; Chen D; Yao W; Fu R J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152 [TBL] [Abstract][Full Text] [Related]
12. Epileptic seizure detection in EEG signal using machine learning techniques. Jaiswal AK; Banka H Australas Phys Eng Sci Med; 2018 Mar; 41(1):81-94. PubMed ID: 29264792 [TBL] [Abstract][Full Text] [Related]
13. An EEG monitoring method based on compressed sensing for fatigue driving. Xin Z Comput Methods Biomech Biomed Engin; 2024 Jul; 27(9):1206-1213. PubMed ID: 38293723 [TBL] [Abstract][Full Text] [Related]
14. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Siuly S; Li Y Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869 [TBL] [Abstract][Full Text] [Related]
15. [Fatigue feature extraction and classification algorithm of forehead single-channel electroencephalography signals]. Yang H; Liu Y; Xia L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):732-741. PubMed ID: 39218599 [TBL] [Abstract][Full Text] [Related]
16. End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network. Jia H; Xiao Z; Ji P Comput Biol Med; 2023 Jan; 152():106431. PubMed ID: 36543007 [TBL] [Abstract][Full Text] [Related]
17. Driving behavior recognition using EEG data from a simulated car-following experiment. Yang L; Ma R; Zhang HM; Guan W; Jiang S Accid Anal Prev; 2018 Jul; 116():30-40. PubMed ID: 29174606 [TBL] [Abstract][Full Text] [Related]
18. SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism. Gao D; Wang K; Wang M; Zhou J; Zhang Y IEEE J Biomed Health Inform; 2024 Aug; 28(8):4444-4455. PubMed ID: 37310832 [TBL] [Abstract][Full Text] [Related]
19. Application of Graph Neural Network in Driving Fatigue Detection Based on EEG Signals. Mu Z; Jin L; Yin J; Wang Q Comput Intell Neurosci; 2022; 2022():9775784. PubMed ID: 36052050 [TBL] [Abstract][Full Text] [Related]
20. Histopathological Image Classification With Color Pattern Random Binary Hashing-Based PCANet and Matrix-Form Classifier. Shi J; Wu J; Li Y; Zhang Q; Ying S IEEE J Biomed Health Inform; 2017 Sep; 21(5):1327-1337. PubMed ID: 27576270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]