BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

672 related articles for article (PubMed ID: 31396308)

  • 1. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development.
    Robledinos-Antón N; Fernández-Ginés R; Manda G; Cuadrado A
    Oxid Med Cell Longev; 2019; 2019():9372182. PubMed ID: 31396308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on the Clinical Development of NRF2-Targeting Drugs.
    Lastra D; Fernández-Ginés R; Manda G; Cuadrado A
    Handb Exp Pharmacol; 2021; 264():93-141. PubMed ID: 32776282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in the development of small molecule Nrf2 activators: a patent review (2017-present).
    Zhou H; Wang Y; You Q; Jiang Z
    Expert Opin Ther Pat; 2020 Mar; 30(3):209-225. PubMed ID: 31922884
    [No Abstract]   [Full Text] [Related]  

  • 4. Activating or Inhibiting Nrf2?
    Chu XY; Liu YM; Zhang HY
    Trends Pharmacol Sci; 2017 Nov; 38(11):953-955. PubMed ID: 28886953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential.
    Crisman E; Duarte P; Dauden E; Cuadrado A; Rodríguez-Franco MI; López MG; León R
    Med Res Rev; 2023 Jan; 43(1):237-287. PubMed ID: 36086898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases.
    Wang J; Cao Y; Lu Y; Zhu H; Zhang J; Che J; Zhuang R; Shao J
    Eur J Med Chem; 2024 Jan; 264():115998. PubMed ID: 38043492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Keap1-Nrf2 protein-protein interaction: A suitable target for small molecules.
    Schmoll D; Engel CK; Glombik H
    Drug Discov Today Technol; 2017 Jun; 24():11-17. PubMed ID: 29233294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replacement of a Naphthalene Scaffold in Kelch-like ECH-Associated Protein 1 (KEAP1)/Nuclear Factor (Erythroid-derived 2)-like 2 (NRF2) Inhibitors.
    Richardson BG; Jain AD; Potteti HR; Lazzara PR; David BP; Tamatam CR; Choma E; Skowron K; Dye K; Siddiqui Z; Wang YT; Krunic A; Reddy SP; Moore TW
    J Med Chem; 2018 Sep; 61(17):8029-8047. PubMed ID: 30122040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.
    Yamazaki H; Tanji K; Wakabayashi K; Matsuura S; Itoh K
    Pathol Int; 2015 May; 65(5):210-9. PubMed ID: 25707882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases.
    Pallesen JS; Tran KT; Bach A
    J Med Chem; 2018 Sep; 61(18):8088-8103. PubMed ID: 29750408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases.
    Joshi G; Johnson JA
    Recent Pat CNS Drug Discov; 2012 Dec; 7(3):218-29. PubMed ID: 22742419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2 in aging - Focus on the cardiovascular system.
    Kloska D; Kopacz A; Piechota-Polanczyk A; Nowak WN; Dulak J; Jozkowicz A; Grochot-Przeczek A
    Vascul Pharmacol; 2019 Jan; 112():42-53. PubMed ID: 30170173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 in health and disease: current and future clinical implications.
    Al-Sawaf O; Clarner T; Fragoulis A; Kan YW; Pufe T; Streetz K; Wruck CJ
    Clin Sci (Lond); 2015 Dec; 129(12):989-99. PubMed ID: 26386022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-Protective Mechanisms of Transcription Factor NRF2: Toward a Common Strategy for Neurodegenerative Diseases.
    Cuadrado A
    Annu Rev Pharmacol Toxicol; 2022 Jan; 62():255-277. PubMed ID: 34637322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances and challenges in therapeutic targeting of NRF2.
    Dinkova-Kostova AT; Copple IM
    Trends Pharmacol Sci; 2023 Mar; 44(3):137-149. PubMed ID: 36628798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy.
    Zhu J; Wang H; Chen F; Fu J; Xu Y; Hou Y; Kou HH; Zhai C; Nelson MB; Zhang Q; Andersen ME; Pi J
    Free Radic Biol Med; 2016 Oct; 99():544-556. PubMed ID: 27634172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NRF2: New Mechanistic Insights and Therapeutic Perspectives.
    Kupiec-Weglinski JW
    Antioxid Redox Signal; 2024 Apr; 40(10-12):632-635. PubMed ID: 37503638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of Nrf2 transcription factor in cellular response to oxidative stress].
    Florczyk U; Łoboda A; Stachurska A; Józkowicz A; Dulak J
    Postepy Biochem; 2010; 56(2):147-55. PubMed ID: 20873109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.