BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31396604)

  • 1. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors.
    Xie T; Wu Z; Gu J; Guo R; Yan X; Duan H; Liu X; Liu W; Liang L; Wan H; Luo Y; Tang D; Shi H; Hu J
    Phys Chem Chem Phys; 2019 Aug; 21(33):18105-18118. PubMed ID: 31396604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the theoretical model of Plasmodium falciparum NADH dehydrogenase and its interaction with artemisinin and derivatives: towards global health therapeutics.
    Kumar SP; Jasrai YT; Pandya HA; George LB; Patel SK
    OMICS; 2013 May; 17(5):231-41. PubMed ID: 23638880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.
    Thillainayagam M; Malathi K; Ramaiah S
    J Biomol Struct Dyn; 2018 Nov; 36(15):3993-4009. PubMed ID: 29132266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.
    Schurig-Briccio LA; Yano T; Rubin H; Gennis RB
    Biochim Biophys Acta; 2014 Jul; 1837(7):954-63. PubMed ID: 24709059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel inhibitors of the Plasmodium falciparum electron transport chain.
    Stocks PA; Barton V; Antoine T; Biagini GA; Ward SA; O'Neill PM
    Parasitology; 2014 Jan; 141(1):50-65. PubMed ID: 24401337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of
    Lane KD; Mu J; Lu J; Windle ST; Liu A; Sun PD; Wellems TE
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6285-6290. PubMed ID: 29844160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein.
    Augustin P; Toplak M; Fuchs K; Gerstmann EC; Prassl R; Winkler A; Macheroux P
    J Biol Chem; 2018 Feb; 293(8):2829-2840. PubMed ID: 29301933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target.
    Lencina AM; Franza T; Sullivan MJ; Ulett GC; Ipe DS; Gaudu P; Gennis RB; Schurig-Briccio LA
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into the type-II mitochondrial NADH dehydrogenases.
    Feng Y; Li W; Li J; Wang J; Ge J; Xu D; Liu Y; Wu K; Zeng Q; Wu JW; Tian C; Zhou B; Yang M
    Nature; 2012 Nov; 491(7424):478-82. PubMed ID: 23086143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
    Heikal A; Nakatani Y; Dunn E; Weimar MR; Day CL; Baker EN; Lott JS; Sazanov LA; Cook GM
    Mol Microbiol; 2014 Mar; 91(5):950-64. PubMed ID: 24444429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Blazyk JL; Lippard SJ
    Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of new promising Plasmodium falciparum superoxide dismutase allosteric inhibitors through hierarchical pharmacophore-based virtual screening and molecular dynamics.
    Araujo JSC; de Souza BC; Costa Junior DB; Oliveira LM; Santana IB; Duarte AA; Lacerda PS; Dos Santos Junior MC; Leite FHA
    J Mol Model; 2018 Jul; 24(8):220. PubMed ID: 30056475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus.
    Sena FV; Sousa FM; Oliveira ASF; Soares CM; Catarino T; Pereira MM
    Redox Biol; 2018 Jun; 16():209-214. PubMed ID: 29524843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum.
    Balconi E; Pennati A; Crobu D; Pandini V; Cerutti R; Zanetti G; Aliverti A
    FEBS J; 2009 Jul; 276(14):3825-36. PubMed ID: 19523113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH
    Dourado DFAR; Swart M; Carvalho ATP
    Chemistry; 2018 Apr; 24(20):5246-5252. PubMed ID: 29124817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum.
    Nantapong N; Otofuji A; Migita CT; Adachi O; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):149-59. PubMed ID: 15665480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.