BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31396716)

  • 1. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping.
    Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D
    J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Public Domain HTS Fingerprints: Design and Evaluation of Compound Bioactivity Profiles from PubChem's Bioassay Repository.
    Helal KY; Maciejewski M; Gregori-Puigjané E; Glick M; Wassermann AM
    J Chem Inf Model; 2016 Feb; 56(2):390-8. PubMed ID: 26898267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Novel eEF2K Inhibitors Using HTS Fingerprint Generated from Predicted Profiling of Compound-Protein Interactions.
    Yoshimori A; Kawasaki E; Murakami R; Kanai C
    Medicines (Basel); 2021 May; 8(5):. PubMed ID: 34065377
    [No Abstract]   [Full Text] [Related]  

  • 9. Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning.
    Xie L; Xu L; Kong R; Chang S; Xu X
    Front Pharmacol; 2020; 11():606668. PubMed ID: 33488387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic molecular fingerprint for big data settings.
    Probst D; Reymond JL
    J Cheminform; 2018 Dec; 10(1):66. PubMed ID: 30564943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal HTS Fingerprint Definitions by Using a Desirability Function and a Genetic Algorithm.
    Cortes Cabrera A; Petrone PM
    J Chem Inf Model; 2018 Mar; 58(3):641-646. PubMed ID: 29425455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.
    Nguyen HP; Koutsoukas A; Mohd Fauzi F; Drakakis G; Maciejewski M; Glen RC; Bender A
    Chem Biol Drug Des; 2013 Sep; 82(3):252-66. PubMed ID: 23647865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development.
    Seo M; Shin HK; Myung Y; Hwang S; No KT
    J Cheminform; 2020 Jan; 12(1):6. PubMed ID: 33431009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs.
    He K
    J Cheminform; 2022 Jun; 14(1):35. PubMed ID: 35672835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models.
    Tayyebi A; Alshami AS; Rabiei Z; Yu X; Ismail N; Talukder MJ; Power J
    J Cheminform; 2023 Oct; 15(1):99. PubMed ID: 37853492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.