These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models. Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959 [TBL] [Abstract][Full Text] [Related]
3. Using information from historical high-throughput screens to predict active compounds. Riniker S; Wang Y; Jenkins JL; Landrum GA J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016 [TBL] [Abstract][Full Text] [Related]
4. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038 [TBL] [Abstract][Full Text] [Related]
5. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. Heikamp K; Bajorath J J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563 [TBL] [Abstract][Full Text] [Related]
6. Public Domain HTS Fingerprints: Design and Evaluation of Compound Bioactivity Profiles from PubChem's Bioassay Repository. Helal KY; Maciejewski M; Gregori-Puigjané E; Glick M; Wassermann AM J Chem Inf Model; 2016 Feb; 56(2):390-8. PubMed ID: 26898267 [TBL] [Abstract][Full Text] [Related]
7. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits. Nisius B; Bajorath J Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390 [TBL] [Abstract][Full Text] [Related]
8. Discovery of Novel eEF2K Inhibitors Using HTS Fingerprint Generated from Predicted Profiling of Compound-Protein Interactions. Yoshimori A; Kawasaki E; Murakami R; Kanai C Medicines (Basel); 2021 May; 8(5):. PubMed ID: 34065377 [No Abstract] [Full Text] [Related]
9. Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning. Xie L; Xu L; Kong R; Chang S; Xu X Front Pharmacol; 2020; 11():606668. PubMed ID: 33488387 [TBL] [Abstract][Full Text] [Related]
10. A probabilistic molecular fingerprint for big data settings. Probst D; Reymond JL J Cheminform; 2018 Dec; 10(1):66. PubMed ID: 30564943 [TBL] [Abstract][Full Text] [Related]
11. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493 [TBL] [Abstract][Full Text] [Related]
12. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints. Yin Z; Song W; Li B; Wang F; Xie L; Xu X Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944 [TBL] [Abstract][Full Text] [Related]
13. Optimal HTS Fingerprint Definitions by Using a Desirability Function and a Genetic Algorithm. Cortes Cabrera A; Petrone PM J Chem Inf Model; 2018 Mar; 58(3):641-646. PubMed ID: 29425455 [TBL] [Abstract][Full Text] [Related]
14. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space. Nguyen HP; Koutsoukas A; Mohd Fauzi F; Drakakis G; Maciejewski M; Glen RC; Bender A Chem Biol Drug Des; 2013 Sep; 82(3):252-66. PubMed ID: 23647865 [TBL] [Abstract][Full Text] [Related]
15. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924 [TBL] [Abstract][Full Text] [Related]
16. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening. Menke J; Koch O J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572 [TBL] [Abstract][Full Text] [Related]
17. Rethinking molecular similarity: comparing compounds on the basis of biological activity. Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495 [TBL] [Abstract][Full Text] [Related]
18. Prediction and Interpretation Microglia Cytotoxicity by Machine Learning. Liu Q; He D; Fan M; Wang J; Cui Z; Wang H; Mi Y; Li N; Meng Q; Hou Y J Chem Inf Model; 2024 Jul; ():. PubMed ID: 38949724 [TBL] [Abstract][Full Text] [Related]
19. Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development. Seo M; Shin HK; Myung Y; Hwang S; No KT J Cheminform; 2020 Jan; 12(1):6. PubMed ID: 33431009 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs. He K J Cheminform; 2022 Jun; 14(1):35. PubMed ID: 35672835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]