These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31396716)

  • 21. Prediction of Inhibitory Activity against the MATE1 Transporter via Combined Fingerprint- and Physics-Based Machine Learning Models.
    Handa K; Sasaki S; Asano S; Kageyama M; Iijima T; Bender A
    J Chem Inf Model; 2024 Sep; 64(18):7068-7076. PubMed ID: 39254593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models.
    Tayyebi A; Alshami AS; Rabiei Z; Yu X; Ismail N; Talukder MJ; Power J
    J Cheminform; 2023 Oct; 15(1):99. PubMed ID: 37853492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Scaffold FingerPrint (SFP): applications in scaffold hopping and scaffold-based selection of diverse compounds.
    Rabal O; Amr FI; Oyarzabal J
    J Chem Inf Model; 2015 Jan; 55(1):1-18. PubMed ID: 25558803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtered circular fingerprints improve either prediction or runtime performance while retaining interpretability.
    Gütlein M; Kramer S
    J Cheminform; 2016; 8():60. PubMed ID: 27853484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening.
    Jasper JB; Humbeck L; Brinkjost T; Koch O
    J Cheminform; 2018 Mar; 10(1):15. PubMed ID: 29549526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MOST: most-similar ligand based approach to target prediction.
    Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX;
    BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Filtering and counting of extended connectivity fingerprint features maximizes compound recall and the structural diversity of hits.
    Hu Y; Lounkine E; Bajorath J
    Chem Biol Drug Des; 2009 Jul; 74(1):92-8. PubMed ID: 19519749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in 2D fingerprint similarity searching.
    Geppert H; Bajorath J
    Expert Opin Drug Discov; 2010 Jun; 5(6):529-42. PubMed ID: 22823165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data.
    Seal S; Yang H; Trapotsi MA; Singh S; Carreras-Puigvert J; Spjuth O; Bender A
    J Cheminform; 2023 Jun; 15(1):56. PubMed ID: 37268960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consensus queries in ligand-based virtual screening experiments.
    Berenger F; Vu O; Meiler J
    J Cheminform; 2017 Nov; 9(1):60. PubMed ID: 29185065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of Chemical Structure and Cell Morphology Information for Multitask Bioactivity Predictions.
    Trapotsi MA; Mervin LH; Afzal AM; Sturm N; Engkvist O; Barrett IP; Bender A
    J Chem Inf Model; 2021 Mar; 61(3):1444-1456. PubMed ID: 33661004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Zell A
    J Cheminform; 2011 Jan; 3(1):3. PubMed ID: 21219648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction.
    Cortés-Ciriano I; Škuta C; Bender A; Svozil D
    J Cheminform; 2020 Jun; 12(1):41. PubMed ID: 33431016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular fingerprint recombination: generating hybrid fingerprints for similarity searching from different fingerprint types.
    Nisius B; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1859-63. PubMed ID: 19714705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening.
    Vogt M; Stumpfe D; Geppert H; Bajorath J
    J Med Chem; 2010 Aug; 53(15):5707-15. PubMed ID: 20684607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical-Genetic Interactions.
    Safizadeh H; Simpkins SW; Nelson J; Li SC; Piotrowski JS; Yoshimura M; Yashiroda Y; Hirano H; Osada H; Yoshida M; Boone C; Myers CL
    J Chem Inf Model; 2021 Sep; 61(9):4156-4172. PubMed ID: 34318674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.
    Rodríguez-Pérez R; Vogt M; Bajorath J
    ACS Omega; 2017 Oct; 2(10):6371-6379. PubMed ID: 30023518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.