BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31396858)

  • 1. Brain-Wide Shape Reconstruction of a Traced Neuron Using the Convex Image Segmentation Method.
    Li S; Quan T; Zhou H; Huang Q; Guan T; Chen Y; Xu C; Kang H; Li A; Fu L; Luo Q; Gong H; Zeng S
    Neuroinformatics; 2020 Apr; 18(2):199-218. PubMed ID: 31396858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Weak Signals in Inhomogeneous Neuronal Images for Large-Scale Tracing of Sparsely Distributed Neurites.
    Li S; Quan T; Zhou H; Yin F; Li A; Fu L; Luo Q; Gong H; Zeng S
    Neuroinformatics; 2019 Oct; 17(4):497-514. PubMed ID: 30635864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network.
    Liu M; Wu S; Chen R; Lin Z; Wang Y; Meijering E
    IEEE Trans Med Imaging; 2024 Jul; 43(7):2574-2586. PubMed ID: 38373129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning.
    Zhao J; Chen X; Xiong Z; Liu D; Zeng J; Xie C; Zhang Y; Zha ZJ; Bi G; Wu F
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4034-4046. PubMed ID: 32746145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.
    de Santos-Sierra D; Sendiña-Nadal I; Leyva I; Almendral JA; Ayali A; Anava S; Sánchez-Ávila C; Boccaletti S
    Cytometry A; 2015 Jun; 87(6):513-23. PubMed ID: 25393432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SparseTracer: the Reconstruction of Discontinuous Neuronal Morphology in Noisy Images.
    Li S; Zhou H; Quan T; Li J; Li Y; Li A; Luo Q; Gong H; Zeng S
    Neuroinformatics; 2017 Apr; 15(2):133-149. PubMed ID: 27928656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution Segmentation Network for Reconstruction of Packed Neurites.
    Zhou H; Cao T; Liu T; Liu S; Chen L; Chen Y; Huang Q; Ye W; Zeng S; Quan T
    Neuroinformatics; 2022 Oct; 20(4):1155-1167. PubMed ID: 35851944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.
    Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Guided Segmentation for 3D Neuron Reconstruction.
    Yang B; Liu M; Wang Y; Zhang K; Meijering E
    IEEE Trans Med Imaging; 2022 Apr; 41(4):903-914. PubMed ID: 34748483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurite Tracing With Object Process.
    Basu S; Ooi WT; Racoceanu D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1443-51. PubMed ID: 26742129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation.
    Radojević M; Meijering E
    Neuroinformatics; 2019 Jul; 17(3):423-442. PubMed ID: 30542954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuron image segmentation method based Deep Boltzmann Machine and CV model.
    He F; Huang X; Wang X; Qiu S; Jiang F; Ling SH
    Comput Med Imaging Graph; 2021 Apr; 89():101871. PubMed ID: 33713913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Analysis of Neuronal Morphology in 2D Fluorescence Micrographs through an Unsupervised Semantic Segmentation of Neurons.
    Zehtabian A; Fuchs J; Eickholt BJ; Ewers H
    Neuroscience; 2024 Jun; 551():333-344. PubMed ID: 38838980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurient: an algorithm for automatic tracing of confluent neuronal images to determine alignment.
    Mitchel JA; Martin IS; Hoffman-Kim D
    J Neurosci Methods; 2013 Apr; 214(2):210-22. PubMed ID: 23384629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational framework for studying neuron morphology from in vitro high content neuron-based screening.
    Huang Y; Zhou X; Miao B; Lipinski M; Zhang Y; Li F; Degterev A; Yuan J; Hu G; Wong ST
    J Neurosci Methods; 2010 Jul; 190(2):299-309. PubMed ID: 20580743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron Image Segmentation via Learning Deep Features and Enhancing Weak Neuronal Structures.
    Yang B; Chen W; Luo H; Tan Y; Liu M; Wang Y
    IEEE J Biomed Health Inform; 2021 May; 25(5):1634-1645. PubMed ID: 32809948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tracing algorithm for high throughput imaging Screening of neuron-based assays.
    Zhang Y; Zhou X; Degterev A; Lipinski M; Adjeroh D; Yuan J; Wong ST
    J Neurosci Methods; 2007 Feb; 160(1):149-62. PubMed ID: 16987551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeleton optimization of neuronal morphology based on three-dimensional shape restrictions.
    Jiang S; Pan Z; Feng Z; Guan Y; Ren M; Ding Z; Chen S; Gong H; Luo Q; Li A
    BMC Bioinformatics; 2020 Sep; 21(1):395. PubMed ID: 32887543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI.
    Halder A; Talukdar NA
    Magn Reson Imaging; 2019 Oct; 62():129-151. PubMed ID: 31247252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.