These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31396876)

  • 1. Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis.
    Demiray E; Karatay SE; Dönmez G
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29366-29378. PubMed ID: 31396876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus.
    Chupaza MH; Park YR; Kim SH; Yang JW; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2021 Feb; 193(2):502-514. PubMed ID: 33026615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.
    Bhatia L; Johri S
    Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Bioethanol Fermentation by Sonication Using Three Yeasts Species and Kariba Weed (Salvinia molesta) as Biomass Collected from Lake Victoria, Uganda.
    Kityo MK; Sunwoo I; Kim SH; Park YR; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2020 Sep; 192(1):180-195. PubMed ID: 32338330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the Severity Factor and HMF Removal of Red Macroalgae Gracilaria verrucosa to Production of Bioethanol by Pichia stipitis and Kluyveromyces marxianus with Adaptive Evolution.
    Sukwong P; Sunwoo IY; Lee MJ; Ra CH; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2019 Apr; 187(4):1312-1327. PubMed ID: 30221316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.
    Xin F; Geng A; Chen ML; Gum MJ
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1052-64. PubMed ID: 19936631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.
    Toquero C; Bolado S
    Bioresour Technol; 2014 Apr; 157():68-76. PubMed ID: 24531149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates.
    Nguyen TH; Ra CH; Sunwoo IY; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2016 Jul; 26(7):1259-66. PubMed ID: 27056472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea.
    Sunwoo IY; Nguyen TH; Sukwong P; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2018 Mar; 28(3):401-408. PubMed ID: 29212293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production.
    Sahu S; Pramanik K
    Appl Biochem Biotechnol; 2018 Dec; 186(4):1047-1060. PubMed ID: 29858754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.
    Fonseca BG; Puentes JG; Mateo S; Sánchez S; Moya AJ; Roberto IC
    J Agric Food Chem; 2013 Oct; 61(40):9658-65. PubMed ID: 23992561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.
    Sukwong P; Ra CH; Sunwoo IY; Tantratian S; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):953-960. PubMed ID: 29572665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of brewer's spent grains to bioethanol.
    White JS; Yohannan BK; Walker GM
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-culture of
    Naseeruddin S; Desai S; Venkateswar Rao L
    3 Biotech; 2021 Jan; 11(1):21. PubMed ID: 33442519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R; Sharma KK; Kuhad RC
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis.
    Nigam JN
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):145-50. PubMed ID: 11420654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.
    Arslan Y; Eken-Saraçoğlu N
    Bioresour Technol; 2010 Nov; 101(22):8664-70. PubMed ID: 20599381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.
    Cho H; Ra CH; Kim SK
    J Microbiol Biotechnol; 2014 Feb; 24(2):264-9. PubMed ID: 24196166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis.
    Ntaikou I; Menis N; Alexandropoulou M; Antonopoulou G; Lyberatos G
    Bioresour Technol; 2018 Sep; 263():75-83. PubMed ID: 29730521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.