These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31396876)

  • 21. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater.
    Gonçalves FA; dos Santos ES; de Macedo GR
    J Basic Microbiol; 2015 Jun; 55(6):695-708. PubMed ID: 25760943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor.
    Yeon JH; Lee SE; Choi WY; Choi WS; Kim IC; Lee HY; Jung KH
    J Microbiol Biotechnol; 2011 Jan; 21(1):109-14. PubMed ID: 21301200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation.
    Nguyen TH; Ra CH; Sunwoo IY; Sukwong P; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2018 Feb; 184(2):513-523. PubMed ID: 28756542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis.
    Bellido C; Bolado S; Coca M; Lucas S; González-Benito G; García-Cubero MT
    Bioresour Technol; 2011 Dec; 102(23):10868-74. PubMed ID: 21983414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS₃.
    Chandel AK; Singh OV; Narasu ML; Rao LV
    N Biotechnol; 2011 Oct; 28(6):593-9. PubMed ID: 21185411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.
    Nigam JN
    J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis.
    Lee HJ; Seo YJ; Lee JW
    Bioresour Technol; 2013 Apr; 133():87-91. PubMed ID: 23422303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters.
    Ganguly A; Das S; Bhattacharya A; Dey A; Chatterjee PK
    Indian J Exp Biol; 2013 Jul; 51(7):556-66. PubMed ID: 23898555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.
    Flores JA; Gschaedler A; Amaya-Delgado L; Herrera-López EJ; Arellano M; Arrizon J
    Bioresour Technol; 2013 Oct; 146():267-273. PubMed ID: 23941710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valorization of Pineapple Leaves Waste for the Production of Bioethanol.
    Saini R; Chen CW; Patel AK; Saini JK; Dong CD; Singhania RR
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol production from water hyacinth (Eichhornia crassipes) hydrolysate by hyper-thermal acid hydrolysis, enzymatic saccharification and yeasts adapted to high concentration of xylose.
    Sunwoo I; Kwon JE; Nguyen TH; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2019 Aug; 42(8):1367-1374. PubMed ID: 31062088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of nonionic adsorbent resins for removal of inhibitory compounds from corncob hydrolysate for ethanol fermentation.
    Hatano K; Aoyagi N; Miyakawa T; Tanokura M; Kubota K
    Bioresour Technol; 2013 Dec; 149():541-5. PubMed ID: 24094738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.