These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31396957)

  • 21. Tyrosine kinases as molecular targets to inhibit cancer progression and metastasis.
    Cepero V; Sierra JR; Giordano S
    Curr Pharm Des; 2010; 16(12):1396-409. PubMed ID: 20166985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Tyrosine Kinases and their Inhibitors in Cancer Therapy: A Comprehensive Review.
    Kumar V; Kaur N; Sahu S; Sharma V; Kumar D; Sharma A; Wadhwa P
    Curr Med Chem; 2023; 30(13):1464-1481. PubMed ID: 35894454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    Jose C; Bellance N; Rossignol R
    Biochim Biophys Acta; 2011 Jun; 1807(6):552-61. PubMed ID: 20955683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Danusertib, an aurora kinase inhibitor.
    Meulenbeld HJ; Mathijssen RH; Verweij J; de Wit R; de Jonge MJ
    Expert Opin Investig Drugs; 2012 Mar; 21(3):383-93. PubMed ID: 22242557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer.
    Sradhanjali S; Reddy MM
    Curr Top Med Chem; 2018; 18(6):444-453. PubMed ID: 29788890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overcoming the drug resistance problem with second-generation tyrosine kinase inhibitors: from enzymology to structural models.
    Crespan E; Zucca E; Maga G
    Curr Med Chem; 2011; 18(19):2836-47. PubMed ID: 21651495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of tyrosine kinase inhibitors in cancer therapy.
    Arora A; Scholar EM
    J Pharmacol Exp Ther; 2005 Dec; 315(3):971-9. PubMed ID: 16002463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.
    Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S
    Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
    Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S
    Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Tyrosine kinases as targets of cancer therapy: from disbelief to Lazarus responses].
    Joensuu H
    Duodecim; 2012; 128(21):2261-8. PubMed ID: 23210289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors.
    Faivre S; Djelloul S; Raymond E
    Semin Oncol; 2006 Aug; 33(4):407-20. PubMed ID: 16890796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances.
    Hojjat-Farsangi M
    J Drug Target; 2016; 24(3):192-211. PubMed ID: 26211367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinants of Anti-Cancer Effect of Mitochondrial Electron Transport Chain Inhibitors: Bioenergetic Profile and Metabolic Flexibility of Cancer Cells.
    Urra FA; Weiss-López B; Araya-Maturana R
    Curr Pharm Des; 2016; 22(39):5998-6008. PubMed ID: 27510477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment.
    Bosc C; Selak MA; Sarry JE
    Cell Metab; 2017 Nov; 26(5):705-707. PubMed ID: 29117545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosine Phosphorylation of Mitochondrial Creatine Kinase 1 Enhances a Druggable Tumor Energy Shuttle Pathway.
    Kurmi K; Hitosugi S; Yu J; Boakye-Agyeman F; Wiese EK; Larson TR; Dai Q; Machida YJ; Lou Z; Wang L; Boughey JC; Kaufmann SH; Goetz MP; Karnitz LM; Hitosugi T
    Cell Metab; 2018 Dec; 28(6):833-847.e8. PubMed ID: 30174304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.