These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31396988)

  • 21. A censored quantile regression approach for the analysis of time to event data.
    Xue X; Xie X; Strickler HD
    Stat Methods Med Res; 2018 Mar; 27(3):955-965. PubMed ID: 27166408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint modeling of longitudinal, recurrent events and failure time data for survivor's population.
    Cai Q; Wang MC; Chan KCG
    Biometrics; 2017 Dec; 73(4):1150-1160. PubMed ID: 28334426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust and efficient estimation in the parametric proportional hazards model under random censoring.
    Ghosh A; Basu A
    Stat Med; 2019 Nov; 38(27):5283-5299. PubMed ID: 31660630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonparametric estimation of the mean function for recurrent event data with missing event category.
    Lin FC; Cai J; Fine JP; Lai HJ
    Biometrika; 2013; 100(3):. PubMed ID: 24415792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A practical overview and decision tool for analyzing recurrent events in mental illness: A review.
    Kaster TS; Vigod SN; Gomes T; Wijeysundera DN; Blumberger DM; Sutradhar R
    J Psychiatr Res; 2021 May; 137():7-13. PubMed ID: 33636563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marginal regression models with time-varying coefficients for recurrent event data.
    Sun L; Zhou X; Guo S
    Stat Med; 2011 Aug; 30(18):2265-77. PubMed ID: 21590791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exponential decay for binary time-varying covariates in Cox models.
    Keown-Stoneman CDG; Horrocks J; Darlington G
    Stat Med; 2018 Feb; 37(5):776-788. PubMed ID: 29164654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shared frailty models for recurrent events and a terminal event.
    Liu L; Wolfe RA; Huang X
    Biometrics; 2004 Sep; 60(3):747-56. PubMed ID: 15339298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-stage estimation for multivariate recurrent event data with a dependent terminal event.
    Chen CM; Chuang YW; Shen PS
    Biom J; 2015 Mar; 57(2):215-33. PubMed ID: 25524756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The partly Aalen's model for recurrent event data with a dependent terminal event.
    Chen CM; Shen PS; Chuang YW
    Stat Med; 2016 Jan; 35(2):268-81. PubMed ID: 26265213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint frailty models for zero-inflated recurrent events in the presence of a terminal event.
    Liu L; Huang X; Yaroshinsky A; Cormier JN
    Biometrics; 2016 Mar; 72(1):204-14. PubMed ID: 26295794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additive and multiplicative hazards modeling for recurrent event data analysis.
    Lim HJ; Zhang X
    BMC Med Res Methodol; 2011 Jun; 11():101. PubMed ID: 21708022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Joint modelling of repeated transitions in follow-up data--a case study on breast cancer data.
    Genser B; Wernecke KD
    Biom J; 2005 Jun; 47(3):388-401. PubMed ID: 16053262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Penalized partial likelihood inference of proportional hazards latent trait models.
    Kang HA
    Br J Math Stat Psychol; 2017 May; 70(2):187-208. PubMed ID: 27958648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multilevel models for survival analysis with random effects.
    Yau KK
    Biometrics; 2001 Mar; 57(1):96-102. PubMed ID: 11252624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of varying the event generation process in simulation studies of statistical methods for recurrent events.
    Metcalfe C; Thompson SG
    Stat Med; 2006 Jan; 25(1):165-79. PubMed ID: 16217859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sparse estimation of Cox proportional hazards models via approximated information criteria.
    Su X; Wijayasinghe CS; Fan J; Zhang Y
    Biometrics; 2016 Sep; 72(3):751-9. PubMed ID: 26873398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
    Song X; Davidian M; Tsiatis AA
    Biometrics; 2002 Dec; 58(4):742-53. PubMed ID: 12495128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On estimation of covariate-specific residual time quantiles under the proportional hazards model.
    Crouch LA; May S; Chen YQ
    Lifetime Data Anal; 2016 Apr; 22(2):299-319. PubMed ID: 26058825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tests for treatment group differences in the hazards for survival, before and after the occurrence of an intermediate event.
    Bebchuk JD; Betensky RA
    Stat Med; 2005 Feb; 24(3):359-78. PubMed ID: 15568187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.