These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 31397074)
1. A minimally-invasive cryogel based approach for the development of human ectopic liver in a mouse model. Kumari J; Teotia AK; Karande AA; Kumar A J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):1022-1032. PubMed ID: 31397074 [TBL] [Abstract][Full Text] [Related]
2. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. Kumari J; Karande AA; Kumar A ACS Appl Mater Interfaces; 2016 Jan; 8(1):264-77. PubMed ID: 26654271 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Chang KH; Liao HT; Chen JP Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171 [TBL] [Abstract][Full Text] [Related]
4. Responsive polymer-assisted 3D cryogel supports Huh7.5 as in vitro hepatitis C virus model and ectopic human hepatic tissue in athymic mice. Jayal P; Behera P; Mullick R; Ramachandra SG; Das S; Kumar A; Karande A Biotechnol Bioeng; 2021 Mar; 118(3):1286-1304. PubMed ID: 33295646 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
6. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays. Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396 [TBL] [Abstract][Full Text] [Related]
7. Gelatin interpenetration in poly N-isopropylacrylamide network reduces the compressive modulus of the scaffold: A property employed to mimic hepatic matrix stiffness. Sarkar J; Kamble SC; Patil R; Kumar A; Gosavi SW Biotechnol Bioeng; 2020 Feb; 117(2):567-579. PubMed ID: 31691950 [TBL] [Abstract][Full Text] [Related]
8. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
9. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Kuo CY; Chen CH; Hsiao CY; Chen JP Carbohydr Polym; 2015 Mar; 117():722-730. PubMed ID: 25498693 [TBL] [Abstract][Full Text] [Related]
12. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Jain E; Srivastava A; Kumar A J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161 [TBL] [Abstract][Full Text] [Related]
13. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory. Fu CY; Chuang WT; Hsu SH ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161 [TBL] [Abstract][Full Text] [Related]
14. Heparin Functionalized Injectable Cryogel with Rapid Shape-Recovery Property for Neovascularization. Kim I; Lee SS; Bae S; Lee H; Hwang NS Biomacromolecules; 2018 Jun; 19(6):2257-2269. PubMed ID: 29689163 [TBL] [Abstract][Full Text] [Related]
15. Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization. Uygun M; Uygun DA; Ozçalışkan E; Akgöl S; Denizli A J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 887-888():73-8. PubMed ID: 22309777 [TBL] [Abstract][Full Text] [Related]
16. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
17. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Borg DJ; Welzel PB; Grimmer M; Friedrichs J; Weigelt M; Wilhelm C; Prewitz M; Stißel A; Hommel A; Kurth T; Freudenberg U; Bonifacio E; Werner C Acta Biomater; 2016 Oct; 44():178-87. PubMed ID: 27506126 [TBL] [Abstract][Full Text] [Related]
18. Injectable, Tough Alginate Cryogels as Cancer Vaccines. Shih TY; Blacklow SO; Li AW; Freedman BR; Bencherif S; Koshy ST; Darnell MC; Mooney DJ Adv Healthc Mater; 2018 May; 7(10):e1701469. PubMed ID: 29441705 [TBL] [Abstract][Full Text] [Related]
19. Mussel-inspired conductive Ti Ye G; Wen Z; Wen F; Song X; Wang L; Li C; He Y; Prakash S; Qiu X Theranostics; 2020; 10(5):2047-2066. PubMed ID: 32104499 [No Abstract] [Full Text] [Related]
20. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. He T; Li B; Colombani T; Joshi-Navare K; Mehta S; Kisiday J; Bencherif SA; Bajpayee AG Tissue Eng Part A; 2021 Jun; 27(11-12):748-760. PubMed ID: 33108972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]