These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31397157)

  • 1. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
    Yang J; Chen Z; Sun H; Samanta A
    J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties.
    Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B
    J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark.
    Daru J; Forbert H; Behler J; Marx D
    Phys Rev Lett; 2022 Nov; 129(22):226001. PubMed ID: 36493459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach.
    Serrano Jiménez A; Sánchez Muzas AP; Zhang Y; Ovčar J; Jiang B; Lončarić I; Juaristi JI; Alducin M
    J Chem Theory Comput; 2021 Aug; 17(8):4648-4659. PubMed ID: 34278798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physically informed artificial neural networks for atomistic modeling of materials.
    Pun GPP; Batra R; Ramprasad R; Mishin Y
    Nat Commun; 2019 May; 10(1):2339. PubMed ID: 31138813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry of Energy Landscapes and the Optimizability of Deep Neural Networks.
    Becker S; Zhang Y; Lee AA
    Phys Rev Lett; 2020 Mar; 124(10):108301. PubMed ID: 32216422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to describe chemical environments in high-dimensional neural network potentials.
    Kocer E; Mason JK; Erturk H
    J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems.
    Zhang Y; Xia J; Jiang B
    J Chem Phys; 2022 Mar; 156(11):114801. PubMed ID: 35317591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality.
    Zhang Y; Xia J; Jiang B
    Phys Rev Lett; 2021 Oct; 127(15):156002. PubMed ID: 34677998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.